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In this paper, we consider the problem of testing properties of joint distributions under the Conditional

Sampling framework. In the standard sampling model, sample complexity of testing properties of joint

distributions are exponential in the dimension, resulting in inefficient algorithms for practical use. While recent

results achieve efficient algorithms for product distributions with significantly smaller sample complexity, no

efficient algorithm is expected when the marginals are not independent.

In this paper, we initialize the study of conditional sampling in the multidimensional setting. We propose

a subcube conditional sampling model where the tester can condition on a (adaptively) chosen subcube of

the domain. Due to its simplicity, this model is potentially implementable in many practical applications

particularly when the distribution is a joint distribution over Σn for some set Σ.
We present algorithms for various fundamental properties of distributions, in the subcube-conditioning

model and prove that the sample complexity is polynomial in the dimension n (and not exponential as in

the traditional model). We present an algorithm for testing identity to a known distribution using
˜O(n2)-

subcube-conditional samples, an algorithm for testing identity between two unknown distributions using

˜O(n5)-subcube-conditional samples and an algorithm for testing identity to a product distribution using

˜O(n5)-subcube-conditional samples.

The central concept of our technique involves an elegant chain rule which can be proved using basic

techniques of probability theory, yet powerful enough to avoid the curse of dimensionality.
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1 INTRODUCTION
Property Testing of Distributions. The boom of Big Data Analytics has rejuvenated the well

studied area of hypothesis testing over unknown distributions. In Computer Science, the study

of this type of problems was initiated by Batu et al. [Batu et al. 2013] under the framework of

“Property Testing” [Goldreich et al. 1998; Rubinfeld & Sudan 1996] In this framework, the “tester”

draws independent samples from the distribution, and decides whether the distribution satisfies
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a certain property P (null hypothesis) or is far from any distribution that satisfies P (alternate

hypothesis).

Several properties of probability distributions have been studied in this framework. Testing

whether the distribution is uniform [Batu et al. 2001; Chan et al. 2014; Goldreich & Ron 2011],

testing identity between two unknown distributions (taking samples from both the distributions)

[Batu et al. 2013; Levi et al. 2013], testing independence of marginals of product distributions [Batu

et al. 2001] , estimating entropy [Batu et al. 2005] are few of the numerous problems that have

been studied in the literature. See [Canonne 2015b] for a survey on results related to distribution

testing. q Unfortunately, from the modern data analytics point of view, the traditional framework

of sampling yields impractical sample complexity. For example, testing if a distribution over a

set of n elements is uniform requires Ω(
√
n) samples from the distribution. The other problems

mentioned above have sample complexity at least this high, and in some cases almost linear in n
[Raskhodnikova et al. 2009; Valiant & Valiant 2011; Valiant 2011].

Conditional Sampling
To remedy this situation, Chakraborty et al. [Chakraborty et al. 2016] and Canonne, Ron and

Servedio [Canonne et al. 2015] proposed a different model, called conditional sampling, which has

emerged as a powerful tool for testing properties of probability distributions. In this model, the

testers are allowed to sample according to the distribution conditioned on any specific subset of

the domain. If the distribution, µ, is over the domain Σ, the tester can submit any subset S ⊆ Σ and

receive a sample i ∈ S with probability µ(i)/
∑

j ∈S µ(j), where µ(i) is the probability of i occurring
when a sample is drawn from the distribution µ.

[Canonne et al. 2015; Chakraborty et al. 2016] proved that in the conditional sampling model,

testing uniformity, testing identity to a known distribution, and testing any label-invariant property

of distributions are easier than with the unconditional sampling model. Specifically, one can get

an algorithm for testing uniformity using Õ(1/ϵ2) conditional samples (conditioning on arbitrary

subsets of size 2) [Canonne et al. 2015] . Falahatgar et al. [Falahatgar et al. 2015], improving

an upper bound of
˜O(1/ϵ4) in [Canonne et al. 2015], showed that testing identity to a known

distribution could also be done using
˜O(1/ϵ2) conditional samples. They also showed that there

exists an algorithm to test identity between two unknown distributions on Σ using
˜O(log log |Σ|/ϵ5)

conditional samples. In [Acharya et al. 2015a], Acharya, Canonne, and Kamath showed a lower

bound of Ω(
√
log logn) for testing equivalence of two unknown distributions.

The sample complexity, in the conditional sampling model, depends on the structure of the

condition, i.e., the structure of the subsets (of the domain) on which the distribution is conditioned

for drawing samples. Naturally, if there is no restriction on the condition, the tester can sample

conditioned on arbitrary subsets, the sample complexity improves. In [Canonne et al. 2015], the

authors presented an algorithm for testing whether a distribution over {1, . . . ,n} is uniform, with

sample complexity Θ̃(1/ϵ2) when conditioning on arbitrary subsets of size 2. However, when the

condition set was structured and restricted to intervals, they proved a lower bound of sample com-

plexity Ω
(

logn
log logn

)
. In [Canonne 2015a], Canonne showed that conditioning on interval improves

the query complexity of monotonicity testing. Hence it is important to consider the plausible

restrictions on the conditions, arising from the structure of the domain.

While [Canonne et al. 2015] studied some of the restrictions of the conditions there are many

more restrictions, which arise from the structure of the domain and/or arise from other applications,

which are yet to be studied. One such important case is when the domain is a Cartesian product

of set and one is allowed to condition on the Cartesian product of subsets, but not on arbitrary

subsets of the domain.
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Testing Joint Distributions: Subcube Conditioning. In practice, data are often multidimensional.

In Cryptography, the keys are often defined over {0, 1}n . Solutions to SAT formulae are over

{0, 1}n as well. On the other hand, the Lottery Tickets are defined over [m]n for some m ∈ N
(each ticket contains n numbers, each from the set [m]). In fact, data analysts often get data of

million dimensions (features). With higher dimension, comes the “curse of dimensionality.” The

sample complexity of the testers is exponential in dimension [Acharya et al. 2015b; Batu et al.

2001; Diakonikolas & Kane 2016], prohibiting practical applications. Very recently, [Daskalakis

et al. 2018] considered testing higher dimensional structured distributions modeled using Markov

Random Fields and achieved polynomial (in the dimension) sample complexity under the Ising

model. [Canonne et al. 2017; Daskalakis & Pan 2017] considered testing properties of structured

distributions using the probabilistic graphical model and achieved sublinear complexity for certain

properties of Bayesian networks. However, all these results assume the distribution is structured

and has certain properties. But for arbitrary distributions, testing with practical complexity remains

a big concern.

One can indeed be hopeful that using conditional sampling, testing properties of arbitrary joint

distributions with practical complexity can be achieved. In that case, the assumptions are imposed

on the sampling model. Finding correct and natural sampling model is a challenge in itself. While

joint distributions can also be viewed as a distribution over a larger domain, the domains of the

marginals may be different. Hence sampling conditioned on arbitrary subsets (as used in [Canonne

et al. 2015; Chakraborty et al. 2016]) may not be feasible in real life.

In [Canonne et al. 2015], authors also considered structured conditioning, namely Icond (con-

ditioning over an interval) and PCond (conditioning over a pair of points). Icond requires the

domain to be well ordered. Moreover, for both the cases, one should be able to sample from arbitrary

intervals. For a joint distribution, the natural ordering of the domain is a pair; it involves ordering in

the dimensions coupled with ordering in the individual domains. For such an ordering, an arbitrary

interval required for the Icond tester need not be succinctly encodable and remains impractical.

1.1 Our Results
In this paper, we propose the subcube conditioning model and analyze property testing of joint

distributions in that model.

Informally, the subcube conditioning model can be described in the following way. Let Σn be the

domain of the distribution µ. The Subcube Conditioning Oracle accepts A1,A2, · · · ,An ⊆ Σ and

constructs S = A1×A2×· · ·×An as the condition set. The oracle returns a vector x = (x1,x2, · · · ,xn),
where each xi ∈ Ai , with probability µ(x)/(

∑
w ∈S µ(w)). If µ(S) = 0, we assume the oracle returns

an element from S uniformly at random. We will call these kinds of sample subcube-conditional-

samples and call the corresponding sample complexity subcube-conditional-sample complexity.

There is no restriction on the individual Ais. They may be unstructured or structured as pairs or

intervals as used in [Canonne et al. 2015; Chakraborty et al. 2016].

Motivation of SubCube conditioning. We believe the subcube conditional sampling model is

mathematically interesting in itself. Every Boolean function can be modeled as a subgraph of a

hypercube. Testing a property of a Boolean function translates to testing some property of the

resulting subgraph. The conditional sampling model is equivalent to sampling over the edges of

such subgraph, i.e., to fixing some vertices, sampling over the edges, and checking the properties of

the adjacent vertices. We argue sampling over the hypercube arises naturally in many areas.

Database Query. A typical “SELECT” query to a database often looks like SELECT field1
WHERE field2= cond1 and field2 = cond2. The response to such a query is all the tuples which

satify cond1 and cond2. Sampling over such tuples are indeed conditional sampling.
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Side Channel Cryptanalysis. In modern Cryptography, schemes are often “proven” secure

(no efficient attack algorithm exists) under the assumption that the keys, internal randomness, and

internal memory are inaccessible to the adversary. However, in practice, Cryptographic schemes

are deployed in a wide variety of devices, specifically hand-held devices, and smart cards. This

situation leads to the “side channel attacks” where tampering with the keys, or internal randomness

is feasible. Specifically, the cryptanalytic techniques of fault attacks fix/modify some bits and test

the resulting distributions. The subcube conditioning model captures this attack scenario (fixing

some bits and testing on resulting subcube).

Our results in this paper can be viewed as proof that “indistinguishability” with uniform (in fact

any known distribution) cannot be proven if adversary can tamper with the internal state.
1

Verification of Random SAT solutions. In software verification and related areas, random

solutions to SAT problems are often used as a backbone. However testing whether the solution

that one algorithm generates is indeed uniform is a very important problem. Unfortunately, the

standard algorithms require impractical complexity. Recently, Chakraborty et al. [Chakraborty

& Meel 2016] used the conditional sampling model to get a practically deployable solution. The

model of subcube conditioning would be very effective to this problem as one natural conditioning

technique is to fix some variables of the SAT equation and then test the distribution of the provided

solution.

Recently [Gouleakis et al. 2017], has obtained significant improvement in the runtimes of

sublinear algorithms for k means clustering and weight estimation of minimum spanning tree

using conditional samples. We believe the subcube conditioning can be used in this setting as well.

We remark that the idea of subcube conditioning has been mentioned in the literature related

to property testing as well. In fact, analysis of joint distributions using subcube conditioning was

posed as a natural open problem in [Canonne et al. 2015].

Our Results. We focus on four fundamental properties of distributions: given two joint distribu-

tions µ and µ ′ over Σn we would like to test, using subcube-conditional-samples, if (a) µ is uniform,

(b) µ is identical to µ ′ (when µ ′ is known in advance), (c) µ is identical to µ ′ (when µ ′ is not known
in advance and has to be accessed using conditional samples), and (d) µ is a product distribution.

We have the following four theorems:

Theorem 1.1. (Informal) Let µ be a probability distribution over Σn . There exists an algorithm for

testing if µ is uniform, using
˜O(n2/ϵ2) subcube-conditional-samples.

2

Theorem 1.2. (Informal) Let µ be a known probability distribution over the set Σn . Let µ ′ be an

unknown distribution over Σn . There exists an algorithm to test identity of µ ′ with µ using
˜O(n2/ϵ2)

subcube-conditional-samples.
2

Theorem 1.3. (Informal) Let µ, µ ′ be unknown distributions over Σn . There exists an algorithm to

test if µ ′ and µ are identical using
˜O(n5 log log |Σ|/ϵ5) subcube-conditional-samples from both µ and

µ ′. 2

Theorem 1.4. (Informal) Let µ be a probability distribution over the set Σn . There exists an algorithm

to test whether µ is a product distribution using
˜O(n5 log log |Σ|/ϵ5) subcube-conditional-samples.

2

Comparison to Previous Results. While conditional sampling has been studied in a number of

articles in the recent past and although subcube conditioning is a very natural model (that is also

1
While this result is folklore in Cryptography, the subcube conditioning may be considered as the benchmark model while

analyzing the efficiency of a fault attack.

2 ˜O hides a polynomial function of logn and log(1/ϵ ).
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discussed in [Canonne et al. 2015]), as far as we understand, this is the first formal study on subcube

conditioning. One of the main reason for the lack of literature in this area is that the classical setting

was not well studied either, till recently. Recently in [Canonne et al. 2017] Canonne et al. studied

the problem of testing properties of joint distributions over the domain Σn . For example, for the

fundamental problem of testing if the distribution is uniform, they observed that if the distribution

is a product distribution (that is the n marginals are independent), then one needs Θ(
√
n) samples.

But if the distibutions are not independent then in the worst case Θ(Σn/2) samples are necessary.

In comparison, we show that only
˜O(n2) subcube-conditional samples are necessary in the worst

case, and so we have an exponential improvement in the sample complexity. Also, it is interesting

to note that the sample complexity for uniformity testing in the subcube model is independent of

|Σ|. This shows that power of subcube conditional samples and also gets the query complexity to a

more practical level. Also, from [Canonne et al. 2017] we know that Ω(
√
n) conditional samples are

necessary since in the case of product distributions conditional samples give no additional power

over standard samples.

A list of our results and comparison to previous results on standard sampling algorithms are

given in Table 1.

Problems Conditional Sampling Traditional Sampling

Upper Bound [This paper] Lower Bound Upper and Lower Bound

Identity to the
˜O(n2/ϵ 2) Ω(

√
n/ϵ 2) Θ( |Σ |n/2/ϵ 2)

uniform distribution [Canonne et al. 2017] [Paninski 2008]

Identity to a
˜O(n2/ϵ 2) Ω(

√
n/ϵ 2) Θ( |Σ |n/2/ϵ 2)

known distribution [Canonne et al. 2017] [Valiant & Valiant 2014]

Identity between two
˜O(n5

log log |Σ |/ϵ 5) Ω
(
max

(√
n/ϵ 2, n3/4/ϵ

))
Θ

(
max( |Σ |2n/3/ϵ 4/3, |Σ |n/2/ϵ 2)

)
unknown distributions [Canonne et al. 2017] [Chan et al. 2014]

Identity to a
˜O(n5

log log |Σ |/ϵ 5) Ω
(
max

(√
n/ϵ 2, n3/4/ϵ

))
Θ( |Σ |n/2/ϵ 2)

product distribution [Canonne et al. 2017] [Acharya et al. 2015a]

[Diakonikolas & Kane 2016]

Table 1. Comparison between sample complexity of testing joint distributions in Traditional Sampling Model
and Subcube Conditioning Model.

Overview of Our Technique. Let us start with the problem of testing if a given distribution is

uniform. Let µ be a distribution over Σn with marginals µ1, . . . , µn .
The simplest case is when µ is a product of n independent distributions. That is, µi ’s are inde-

pendent but not necessarily identical. But if µ is ϵ-far from uniform one expects to find at least

one µi which is ϵ/n-far from uniform. Then one can use any tester over Σ if µi is far from uniform,

which should make at most poly(n) traditional queries. In fact, when µ is a product distribution

over {0, 1}n , [Canonne et al. 2017] show that the uniformity and identity can be tested using

O(
√
n/ϵ2) unconditional samples. As the marginals of µ are independent and over {0, 1}n , subcube-

conditional-sampling is equivalent to unconditional sampling followed by projections, and hence

subcube-conditional samples do not give any additional power in this setting.

But if the µi ’s are not independent then it is possible that all the individual marginals are uniform,

but still, the µ is ϵ-far from uniform. As has been observed in [Canonne et al. 2017], any algorithm

(using unconditional sampling) require exp(n) queries. To circumvent this barrier, we need to use

conditional samples. We define a notion of “conditional distance". We show that there exists at

least one i ∈ [n] such that the expected “conditional distance" of ith marginal from uniform is more

than ϵ/poly(n). Thus it is enough to test for all i if the ith marginal is ϵ/poly(n)-far from uniform.
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We can use the testers from [Canonne et al. 2015; Chakraborty et al. 2016] to test exactly that

using poly(n) subcube-conditional samples. The central idea of the correctness of the algorithm is

the correct definition of the “conditional distance" and the “chain rule" that proves that such an

i exists. Although the proof of the “chain rule" (given in Section 3) is simple in hindsight, it is a

powerful tool that acts as the central backbone for all our upper-bound proofs. Moreover, it gives

the flexibility of using adaptive or non adaptive tester over Σ.

1.2 Organization of the paper
In Section 2, we define the notion of conditional distance and SubCube Conditioning. The chain

rule is described in Section 3. In Section 4 we present the identity testers and the derived uniformity

tester. In Section 5, the tester for testing identity between two unknown distributions is presented.

In Section 6, the tester for the independence of marginals is described. In Appendix A we present a

lower bound of n1/4 for testing identity to the uniform distribution. This lower bound was proved

independently of [Canonne et al. 2017] and although our lower bound is weaker than their lower

bound of

√
n, we feel that our techniques can be of independent interest.

2 NOTATIONS AND PRELIMINARIES
If S is a set |S | denotes the size of the set. If x is a vector of length n, xi denotes the i

th
element

of x . x (i) denotes the substring of first i elements of x ; x (i) = (x1,x2, · · · ,xi ). We denote the n-th
harmonic number by H (n).
For any set Ω we denote byUΩ the uniform distribution with support Ω. In most of the cases

the support of the distribution would be clear from the context and in that case we would drop the

subscript and useU as the uniform distribution over the support in question.

If µ is a distribution with support Ω, for any x ∈ Ω we will denote by Prµ (x) the probability the

x occurs when a random sample is drawn from Ω according to µ. If µ is a joint distribution, µi
denotes the ith marginal distribution of µ.

If µ is a distribution over Σn with the marginals µ1, . . . , µn and if the marginals are independent

(that is, µ is a product distribution) then we would write µ = µ1 ⊗ · · · ⊗ µn .

Total Variation Distance. Let µ, µ ′ be two distributions with support Ω. The variation distance

between µ and µ ′ denoted by d(µ, µ ′) is defined as

d(µ, µ ′) :=
1

2

∑
x ∈Ω

����Prµ (x) − Prµ′ (x)���� .
We say µ and µ ′ are ϵ-far (or µ is ϵ-far from µ ′), when d(µ, µ ′) ≥ ϵ .
If µ is a distribution with support Ω and A ⊆ Ω, then by (µ | A) we denote the distribution over

the support A. For any x ∈ A the probability that x occurs when a random sample is drawn from A
(according to the distribution (µ | A)) is given by

Pr

µ |A
(x) =

Prµ (x)∑
y∈A Prµ (y)

.

Hellinger Distance. Let µ, µ ′ be two distributions with support Ω. The Hellinger distance
between µ and µ ′ denoted by H (µ, µ ′) is defined as

H (µ, µ ′) =
1

√
2

√√√∑
x ∈Ω

(√
Pr

µ
(x) −

√
Pr

µ′
(x)

)
2

=

√√√(
1 −

∑
x ∈Ω

√
Pr

µ
(x) Pr

µ′
(x)

)
ACM Trans. Comput. Theory, Vol. 0, No. 0, Article 0. Publication date: 2018.
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Hellinger distance has some nice properties and is useful for bounding lower and upper bounding

variation distance.

d(µ, µ ′) ≤ 2H (µ, µ ′) ≤ 2

√
d(µ, µ ′)

Also for any two product distributions µ = µ1 ⊗ · · · ⊗ µn and µ ′ = µ ′
1
⊗ · · · ⊗ µ ′n

H (µ, µ ′)2 ≤
n∑
i=1

H (µi , µ
′
i )
2.

Conditional Distance. Let µ, µ ′ be two distributions over Ω. Let A ⊆ Ω. The variation distance

between µ and µ ′ conditioned on A (denote by d(µ, µ ′ |A)) is defined as

d(µ, µ ′ |A) :=
1

2

∑
x ∈Ω

����Prµ |A
(x) − Pr

µ′ |A
(x)

���� .
We say µ and µ ′ are ϵ-far, conditioned on A, when d(µ, µ ′ |A) ≥ ϵ .
Subcube Conditioning. In this paper we work with joint distributions; Ω = Σn for some set

Σ. We consider conditional distance under the condition on A = A1 × A2 × · · · × An where each

Ai ⊆ Σ.
Let µ be a distribution over Σn and X = (X1,X2, . . . ,Xn) be a random variable distributed

according to µ. µ(i) denotes the distribution over Σi where for every x ∈ Σi ,

Pr

µ (i )
(x) = Pr

X∼µ
[(X1,X2, · · · ,Xi ) = (x1,x2, · · · ,xi )].

Let w ∈ Σj for some j < i . µi | w denotes the marginal distribution µi when first j random
variables fixed tow .

Pr

µi |w
(x) = Pr

X∼µ
[Xi = x |

j∧
k=1

Xk = wk ].

Definition 2.1. Let µ, µ ′ be two distributions over Σn . The conditional marginal distance of µi and
µi conditioned onw is given by

d(µi , µ
′
i | w) =

1

2

∑
x ∈Σ

���� Prµi |w
(x) − Pr

µ′i |w
(x)

����
The average conditional distance between µi and µ ′i is defined by

Ew∼µ (i−1) [d(µi , µ
′
i |w)] =

∑
w ∈Σi−1

Pr

µ i−1
(w)d(µi , µ

′
i |w).

The SubCube Condition Model. Let µ be a distribution over Σn . A subcube conditional oracle for µ,
denoted SubCondµ , takes as input a sequence of sets {Ai }i ∈[n], Ai ⊆ Σ. Let A be the product set

A1 × · · · ×An . The oracle returns an element x ∈ Σn with probability

Prµ [x ]∑
x∈A Prµ [x ]

independently of

all previous calls to the oracle.

An (ϵ,δ )-SubCond tester for a property P with conditional sample complexity t is a randomized

algorithm, that receives 0 < ϵ,δ < 1, n ∈ N and oracle access to SubCondµ , and operates as

follows.

(1) In every iteration, the algorithm (possibly adaptively) generates a setA = A1×A2×· · ·×An ⊆

Σn , based on the transcript and its internal coin tosses, and calls the conditional oracle with

A to receive an element x , drawn according to the distribution µ conditioned on A.
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(2) Based on the received elements and its internal coin tosses, the algorithm accepts or rejects

the distribution µ.
(3) The algorithm makes at most t queries to SubCondµ , where t can depend on ϵ,δ , Σ and n.

If µ satisfies P then the algorithm must accept with probability at least 1 − δ , and if µ is ϵ-far
from all distributions satisfying P, then the algorithm must reject with probability at least 1 − δ .

Wewill call such a tester an (ϵ,δ )-SubCondP-tester. For example an (ϵ,δ )-SubCondUniformity-

tester is an (ϵ,δ )-SubCond tester that tests if the given distribution is uniform, an (ϵ,δ )-SubCond
Identity-tester is an (ϵ,δ )-SubCond tester that tests if the given distribution is identical to a known

distribution and an (ϵ,δ )-SubCond Product-tester is an (ϵ,δ )-SubCond tester that tests if the given

distribution is a product distribution or far from all the product distributions.

3 CHAIN RULE OF CONDITIONAL DISTANCES
Let µ and µ ′ be two distributions over Σn , and let X = (X1,X2, . . . ,Xn) and X

′ = (X ′
1
,X ′

2
, . . . ,X ′n)

be the corresponding random variables. For any 1 ≤ i ≤ n, we denote by µi and µ
′
i the distributions

of the ith marginals of µ and µ ′ respectively.

Lemma 3.1 (Chain Rule of Conditional Distances). Let µ and µ ′ be two distributions over Σn ,
and let X = (X1,X2, . . . ,Xn) and X

′ = (X ′
1
,X ′

2
, . . . ,X ′n) be two random variables with distribution µ

and µ ′ respectively. Then the following holds.

d(µ, µ ′) ≤ d(µ1, µ
′
1
) +

n∑
i=2

Ew∼µ (i−1) [d(µi , µ
′
i |w)]

Proof of Lemma 3.1: Letw = (w1,w2, . . . ,wn) ∈ Σ
n
.

Let 2 ≤ i ≤ n. Recall thatw (i) denotes the substring of first i elements ofw .

2d(µ(i), µ ′(i)) =
∑
w ∈Σi
| Pr
µ (i )
(w) − Pr

µ′(i )
(w)|

=
∑
w ∈Σi
| Pr
X∼µ
[∧i−1j=1X j = w j ] Pr

X∼µ
[Xi = wi | ∧

i−1
j=1 X j = w j ]

− Pr

X ′∼µ′
[∧i−1j=1X

′
j = w j ] Pr

X ′∼µ′
[X ′i = wi | ∧

i−1
j=1 X

′
j = w j ]|

≤
∑
w ∈Σi

���� PrX∼µ
[∧i−1j=1X j = w j ]

(
Pr

X∼µ
[Xi = wi | ∧

i−1
j=1 X j = w j ] − Pr[X

′
i = wi | ∧

i−1
j=1 X

′
j = w j ]

)����
+

∑
w ∈Σi

����Pr[X ′i = wi | ∧
i−1
j=1 X

′
j = w j ]

(
Pr

X∼µ
[∧i−1j=1X j = w j ] − Pr

X ′∼µ′
[∧i−1j=1X

′
j = w j ]

)����
ACM Trans. Comput. Theory, Vol. 0, No. 0, Article 0. Publication date: 2018.
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Now, the second term reduces to,∑
w ∈Σi

����Pr[X ′i = wi | ∧
i−1
j=1 X

′
j = w j ]

(
Pr

X∼µ
[∧i−1j=1X j = w j ] − Pr

X ′∼µ′
[∧i−1j=1X

′
j = w j ]

)����
=

∑
w ′∈Σi−1

���� PrX∼µ
[∧i−1j=1X j = w

′
j ] − Pr

X ′∼µ′
[∧i−1j=1X

′
j = w

′
j ]

���� ∑
wi ∈Σ

Pr

X ′∼µ′
[X ′i = wi | ∧

i−1
j=1 X

′
j = w

′
j ]

=
∑

w ′∈Σi−1

���� PrX∼µ
[∧i−1j=1X j = w

′
j ] − Pr

X ′∼µ′
[∧i−1j=1X

′
j = w

′
j ]

����
=

∑
w ′∈Σi−1

| Pr
µ (i−1)
(w ′) − Pr

µ′(i−1)
(w ′)|

= 2d(µ(i−1), µ ′(i−1)).

The second equality follows from the fact that for each w ′ ∈ Σi−i ,
∑
wi ∈Σ Pr[X

′
i = wi | ∧

i−1
j=1 X

′
j =

w ′j ] = 1.3 Hence,

d(µ(i), µ ′(i)) ≤ d(µ(i−1), µ ′(i−1)) +
∑

w ∈Σi−1
Pr

µ (i−1)
(w)d(µi , µ

′
i |w)

Solving the recursion we get the lemma. □

Arranging the marginals by the increasing order of the average conditional distance, we get the

immediate corollary.

Lemma 3.2. If d(µ, µ ′) ≥ ϵ , then there exists a c ≤ ⌈logn⌉ such that

2
c−1 ≤

����{i ∈ [n] | Ew∼µ (i−1) [d(µi , µ ′i |w)] ≥ ϵ

2
cH (n)

}����
Proof of Lemma 3.2. Without loss of generality let i1, i2, . . . , in be indices such that

Ew∼µ (i1−1) [d(µi1 , µ
′
i1 |w)] ≥ Ew∼µ (i2−1) [d(µi2 , µ

′
i2 |w)] ≥ Ew∼µ (in−1) [d(µin , µ

′
in |w)]

We will need the following claim.

Claim 3.3. There exists k ∈ [n] such that

Ew∼µ (ik −1) [d(µik , µ
′
ik |w)] ≥ ϵ/(kH (n))

Let k be the index from Claim 3.3. We put c = ⌈logk⌉ to get ϵ/2cH (n) ≤ ϵ/kH (n). Clearly����{i ∈ [n] | Ew∼µ (i−1) [d(µi , µ ′i |w)] ≥ ϵ

2
cH (n)

}���� ≥ k ≥ 2
c−1.

□

Proof of Claim 3.3. If no such k exists, then

d(µ, µ ′) ≤
n∑

k=1

Ew∼µ (ik −1) [d(µik , µ
′
ik |w)] <

n∑
k=1

ϵ/(kH (n)) ≤ ϵ

which contradicts the distance assumption in Lemma 3.2. □

3
If w ′ is outside of support of µ′, like in [Chakraborty et al. 2016], we can define the conditional probability to be uniform

over Σ
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0:10 Rishiraj Bhattacharyya and Sourav Chakraborty

4 TESTING IDENTITY WITH A KNOWN DISTRIBUTION
In this section, we present an identity tester of Sample complexity

˜O(n2/ϵ2). We recall the following

result proved in [Falahatgar et al. 2015].

Lemma 4.1. [Falahatgar et al. 2015] Let µ be a known distribution over Σ. Given 0 < ϵ < 1 and

0 < δ < 1 and a distribution µ ′ over Σ there is an adaptive (ϵ,δ )-SubCond Identity Tester with

conditional sample complexity
˜O( 1ϵ 2 log(

1

δ )). In other words, there is a tester that draws
˜O( 1ϵ 2 log(

1

δ ))

conditional samples and

• if µ = µ ′, then the tester will accept with probability (1 − δ ), and
• if d(µ, µ ′) ≥ ϵ then the tester will reject with probability (1 − δ ).

Let µ be a known distribution over Σn , µ ′ be an unknown distribution over Σn that can be accessed
via SubCondµ′ oracle, and ϵ be the target distance. The following algorithm tests identity of µ ′

with µ. We use the identity tester BasicIDTester over Σ guaranteed by Lemma 4.1 as a subroutine.

Algorithm 1: The Identity Tester for Joint Distributions

1: δ = 1/3.

2: δ ′ = δϵ/64n(logn)2

3: for j = 1 to logn + 1 do
4: ϵj = ϵ/2jH (n)

5: ℓj = log

(
2
j+1H (n)

ϵ

)
6: Create a set S j by sampling, with replacement, (4n/2j ) element from [n] uniformly at

random.

7: for all i ∈ S j do
8: for k = 0 to ℓj do
9: ϵ(j,k ) = 2

k−1ϵj
10: δk = δ ′/(k + 3)2

11: for t = 1 to 2
k+2(k + 3)2 do

12: Samplew ∼ µ. Letw = (w1, · · · ,wn).

13: Consider the distribution µi | w
(i−1)

.

14: If BasicIDTester(µi |w (i−1), µ ′i |w
(i−1), ϵ(j,k ),δk ) rejects, Output REJECT

15: end for
16: end for
17: end for
18: end for
19: Output ACCEPT

Theorem 4.2. Given any 0 < ϵ < 1, Algorithm 1 is an (ϵ, 1
3
) -SubCond Identity Tester for joint

distributions with conditional sample complexity of
˜O(n2/ϵ2) where ˜O hides a polynomial function of

logn, log 1

ϵ .

Note 4.3. For any 0 < ϵ,delta < 1, one can obtain an (ϵ,δ ) -SubCond Identity Tester by standard

techniques of error reduction. The query complexity would increase by a factor of log(1/δ ).

4.1 Proof of Theorem 4.2
Fix δ = 1

3
. In Algorithm 1, Step 14 queries BasicIDTester. BasicIDTester needs conditional samples

for testing whether d(µi , µ
′
i | w

(i−1)) ≥ ϵ(j,k ). To answer a conditional query with condition B ⊆ Σ

for the distribution µ ′i |w
(i−1)

, we set Aj = {w j } for j = 1, 2, . . . , i − 1, Ai = B, and Aj = Σ for
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j = i + 1, . . . ,n, and query the SubCond oracle with the condition A. This correctly simulates

the conditional oracle required by the underlying identity tester. Thus Algorithm 1 is a SubCond

Tester.

4.1.1 Sample Complexity of Algorithm 1. By Lemma 4.1, a query to BasicIDTester with pa-

rameters (µi |w
(i−1), µ ′i |w

(i−1), ϵ(j,k),δk ), requires ˜O(1/ϵ2
(j,k)) samples. Here

˜O hides polylogarithmic

factors of |Σ|, ϵ(j,k) including the factors due to log(1/δk ).
For each index in S j , the sample complexity is

ℓj∑
k=0

˜O

(
1

ϵ2
(j,k )

)
O

(
2
kk2

)
=

ℓj∑
k=0

˜O

(
2
kk2

2
2kϵ2j

)
[∵ ϵ(j,k ) = 2

k−1ϵj by step 9]

=

ℓj∑
k=0

˜O

(
k2

2
kϵ2j

)

Here
˜O hides some polylogarithmic function of k and 1/ϵj . As k ≤ ℓj = log

(
2

ϵj

)
, the expression

can be bounded as

ℓj∑
k=0

˜O

(
k2

2
kϵ2j

)
= ˜O

(
1

ϵ2j

) ℓj∑
k=0

O

(
k2

2
k

)
= ˜O

(
1

ϵ2j

)

The last equality holds true as

∑
k≥0

k2

2
k = 6.

The size of S j is
4n
2
j . Adding over all possible j, we get the total sample complexity

logn+1∑
j=1

4n

2
j
˜O

(
1

ϵ2j

)
=

logn+1∑
j=1

4n

2
j
˜O

(
2
2jH (n)2

ϵ2

)
[∵ ϵj = ϵ/2jH (n) by step 4]

= ˜O

(
nH (n)2

ϵ2

) logn+1∑
j=1

2
j = ˜O(n2/ϵ2)

4.1.2 Correctness of the Algorithm 1. Completeness.We will show that if d(µ, µ ′) = 0 is the

algorithm will reject with probability at most δ .
Algorithm 1, rejects µ ′ if there exists i ∈ [n] and a sampledw = (w1, · · · ,wn) ∈ Σ

n
the underlying

Identity Tester rejects in the Step 14.

Suppose µ and µ ′ are identical. Then for allw ∈ Σi−1, µi |w is identical to µ ′i | w . For each query,

BasicIDTester will reject in Step 14 with probability at most δk . By union bound, the probability

that algorithm will reject µ ′ is at most
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0:12 Rishiraj Bhattacharyya and Sourav Chakraborty

logn+1∑
j=1

4n

2
j

ℓj∑
k=0

(2k+2(k + 3)2δk ) =

logn+1∑
j=1

4n

2
j

ℓj∑
k=0

(2k+2δ ′) [∵ δk = δ ′/(k + 3)2 by step 10]

= 16δ ′
logn+1∑
j=1

n

2
j

ℓj∑
k=0

2
k

< 16δ ′
logn+1∑
j=1

n

2
j 2

ℓj+1

= 64δ ′
logn+1∑
j=1

n

2
j
2
jH (n)

ϵ

<
64δ ′n(logn)2

ϵ
= δ [∵ δ ′ = δϵ/64n(logn)2 by step 2]

Soundness. Now we prove the soundness of the Algorithm 1. Let µ be a distribution over Σn

and d(µ, µ ′) ≥ ϵ . We shall show that Algorithm 1, rejects µ ′ with probability at least 2/3.

Let

τc
def
=

{
i ∈ [n] | Ew∼µ (i−1) [d(µi , µ

′
i |w)] ≥

ϵ

2
cH (n)

}
Let c ≤ ⌈logn⌉ be the integer guaranteed by Lemma 3.2, such that |τc | ≥ 2

c−1
. Note, ℓc =

⌈log

(
2
c+1H (n)

ϵ

)
⌉. For each i ∈ τc , for each k ∈ [ℓc ] ∪ {0} define

Γi,k
def
=

{
w ∈ Σi−1 | d(µi , µ

′
i | ∧

i−1
j=1 X j = w j ) <

2
k−1ϵ

2
cH (n)

}
We require the following lemma based on Levin’s economical work investment strategy [Goldre-

ich 2017].

Lemma 4.4. Let µ be a distribution over Σn , and µ is ϵ-far from uniform. Let X = (X1, · · · ,Xn) be

a random variable with distribution µ. Letw = (w1,w2, · · · ,wn) be a random sample drawn from Σn

according to the distribution µ. Let ϵc =
ϵ

2
cH (n) and ℓc = ⌈log

(
2

ϵc

)
⌉.

Then for all i ∈ τc , there exists k ∈ [ℓc ] ∪ {0},

Pr

w∼µ

[
d(µi , µ

′
i | w

i−1) ≥ 2
k−1ϵc

]
≥

1

2
k (k + 3)2

(1)

( Proof of Lemma 4.4.) From Lemma 3.2, for all index i ∈ τc

Ew∼µ (i−1) [d(µi , µ
′
i |w)] =

∑
w ∈Σi−1

Pr

µ i−1
(w)d(µi , µ

′
i |w) ≥

ϵ

2
cH (n)

Fix i ∈ τc . Let us define

Bk
def
= {w ∈ Σi−1 : 2k−1ϵc ≤ d(µi , µ

′
i | w) < 2

kϵc } k ∈ [ℓc ] ∪ {0}

B−1
def
= {w ∈ Σi−1 : d(µi , µ

′
i | w) < ϵc/2}

By construction, Bℓc+1 = ∅. We shall prove that there exists k ∈ [ℓc ] ∪ {0} such that Prw∼µ [w ∈

Bk ] ≥
1

2
k (k+3)2 . Suppose, towards contradiction, for all k ∈ [ℓc ] ∪ {0}, Prw∼µ [w ∈ Bk ] <

1

2
k (k+3)2 .
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Then

Ew∼µ (i−1) [d(µi , µ
′
i |w)] =

∑
w ∈Σi−1

Pr

µ i−1
(w)d(µi , µ

′
i |w)

=
∑

w ∈B−1

Pr

µ i−1
(w)d(µi , µ

′
i | w) +

∑
k ∈[ℓc ]∪{0}

∑
w ∈Bk

Pr

µ i−1
(w)d(µi , µ

′
i | w)

< Pr

w∼µ
[w ∈ B−1]

ϵc
2

+
∑

k ∈[ℓc ]∪{0}

Pr

w∼µ
[w ∈ Bk ]2

kϵc

<
ϵc
2

+
∑

k ∈[ℓc ]∪{0}

1

2
k (k + 3)2

2
kϵc

=
ϵc
2

+
∑

k ∈[ℓc ]

ϵc
(k + 2)2

< ϵc

In the last inequality we used the fact that

∑
k ∈[ℓc ]

1

(k+2)2 <
∑

k≥0
1

(k+2)2 which is less than 1/2.

□

By Lemma 4.4, there exists 0 ≤ k ≤ ℓc , such that,

Prw∼µ i−1 [w ∈ Γi,k ] <

(
1 −

1

2
k (k + 3)2

)
(2)

Let S j be the set of indices sampled in the Step 3 in the jth iteration. If Algorithm 1 fails to reject

µ ′, one of the following three cases happen.

(1) No index from τc was sampled in S j . Specifically, Sc ∩ τc = ∅. The probability of this event is(
1 −
|τc |

n

)
4n/2c

≤ e−2.

(2) For all index i ∈ Sc ∩ τc , for each k ∈ [ℓc ] ∪ {0}, all the sampledw ’s are from the set Γi,k . The
probability of this event is (

1 −
1

2
k (k + 3)2

)
2
k+2(k+3)2

≤ e−4.

(3) For all index i ∈ Sc ∩ τc , for each k ∈ [ℓc ] ∪ {0}, for all the sampled w < Γi,k , underlying
identity tester fails to reject. Probability of such an event is at most δ ′, which is less than

1/100 for n ≥ 2.

Hence, the probability that Algorithm 1 fails to reject µ ′ is at most e−2 + e−4 + 1/100 < 1/3.

This completes the proof of Theorem 4.2. □

4.2 Uniformity Tester for Arbitrary Joint Distribution
If we set µ to be the uniform distribution, then Algorithm 1 gives us a Uniformity Tester. Hence,

we get the following as a corollary of Theorem 4.2.

Theorem 4.5. Given any 0 < ϵ < 1, there exists an (ϵ, 1
3
)-SubCond Uniformity Tester for any joint

distribution with conditional sample complexity of
˜O(n2/ϵ2) where ˜O hides a polynomial function of

logn, log 1

ϵ .

ACM Trans. Comput. Theory, Vol. 0, No. 0, Article 0. Publication date: 2018.



0:14 Rishiraj Bhattacharyya and Sourav Chakraborty

5 IDENTITY TESTING BETWEEN UNKNOWN JOINT DISTRIBUTIONS
In this section, we present Algorithm 2, to test identity when both µ and µ ′ are unknown. The first
change, from Algorithm 1, we need to make is in Step 12. In this case we can no longer sample

on our own. However, we can query µ to getw . Secondly, instead of Algorithm BasicIDTester, we
need to use Algorithm BasicUnknown guaranteed by the following lemma.

Lemma 5.1. [Falahatgar et al. 2015] Given 0 < ϵ < 1 and 0 < δ < 1 and distributions µ, µ ′ over

Σ there is an (ϵ,δ )-Identity Tester with conditional sample complexity
˜O(

log log |Σ |
ϵ 5 log( 1δ )). In other

words, there is a tester that draws
˜O(

log log |Σ |
ϵ 5 log( 1δ )) independent conditional samples and

• if µ = µ ′, then the tester will accept with probability (1 − δ ), and
• if d(µ, µ ′) ≥ ϵ then the tester will reject with probability (1 − δ ).

Algorithm 2: The Identity Tester for two Unknown Joint Distributions

1: δ = 1/3.

2: δ ′ = δϵ/64n(logn)2

3: for j = 1 to logn + 1 do
4: ϵj = ϵ/2jH (n)

5: ℓj = log

(
2

ϵj

)
6: Create a set S j by sampling, with replacement, (4n/2j ) element from [n] uniformly at

random.

7: for all i ∈ S j do
8: for k = 0 to ℓj do
9: ϵ(j,k ) = 2

k−1ϵj
10: δk = δ ′/(k + 3)2

11: for t = 1 to 2
k+2(k + 3)2 do

12: Query oracle µ to getw ∼ µ. Letw = (w1, · · · ,wn).

13: Consider the distribution µi | w
(i−1)

.

14: If BasicUnknown(µi |w (i−1), µ ′i |w
(i−1), ϵ(j,k ),δk ) rejects, Output REJECT

15: end for
16: end for
17: end for
18: end for
19: Output ACCEPT

To prove correctness of Algorithm 2, we note that, in the chain rule, the expectation is over only

one distribution. Hence it is sufficient to (unconditionally) query only µ to getw , and apply Lemma

3.2. The rest of the proof is exactly the same as in Section 4.

Sample Complexity of Algorithm 2. By Lemma 5.1, each invocation of BasicUnknown with

parameter ϵk ,δk requires
˜O(log log |Σ|/ϵ5k ) samples. As in the case for Algorithm 1, for each index

in S j , the sample complexity is
˜O(log log |Σ|/ϵ5). Hence, the total sample complexity of Algorithm
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2 is

logn+1∑
j=1

4n

2
j ×

˜O

(
log log |Σ|

ϵ5j

)
=

logn+1∑
j=1

4n

2
j ×

˜O

(
2
5jH (n)5 log log |Σ|

ϵ5

)
= ˜O

(
nH (n)5 log log |Σ|

ϵ5

) logn+1∑
j=1

2
4j

= ˜O

(
n5 log log |Σ|

ϵ5

)
Theorem 5.2. Given 0 < ϵ < 1, Algorithm 2 is an (ϵ, 1

3
)-SubCond Identity Tester for two unknown

joint distributions with conditional sample complexity of
˜O

(
n5

log log |Σ |
ϵ 5

)
where

˜O hides a polynomial

function of logn, log 1

ϵ .

6 TESTING INDEPENDENCE OF MARGINALS
Let µ be a probability distribution over Σn . In this section we present an algorithm to test whether

µ is a product distribution; i.e., whether all the marginals of µ are independent or µ is far from all the

product distributions.

Define µ ′ to be the product of marginals of µ.

Pr

µ′
(w) =

n∏
i=1

Pr

µi
(wi ) ∀w ∈ Σn

By definition, the marginal distributions µ ′i are exactly the marginal distributions µi . If µ is ϵ-far
from all the product distributions, it is ϵ-far from µ ′. Using the chain rule (Lemma 3.1),

d(µ, µ ′) ≤ d(µ1, µ
′
1
) +

n∑
i=2

Ew∼µ (i−1) [d(µi , µ
′
i |w)]

=

n∑
i=2

∑
w ∈Σi−1

Prµ (i−1) (w)

( ∑
wi ∈Σ

����Prµi (wi |w) − Pr
µ′i
(wi |w)

����)
=

n∑
i=2

∑
w ∈Σi−1

Prµ (i−1) (w)d(µi |w, µi )

Therefore, we need to test whether there exists i ∈ [n], such that the marginal distribution µi is
far (on average) from the conditional marginal distribution µi |w . As both µi and µi |w is distributed

over Σ, we can again use BasicUnknown tester from [Falahatgar et al. 2015], where identity between

two unknown distributions is tested using
˜O(log log |Σ|/ϵ5) sample complexity. The only thing left

is to samplew according to µi−1. Such aw can be sampled by taking an unconditionally sampled

string and selecting the first i − 1 bit of that string. Rest of the algorithm is exactly same as in

Algorithm 2.

Theorem 6.1. For any 0 < ϵ < 1, there exists an (ϵ, 1
3
)- SubCond Product Tester for joint distribu-

tions with conditional sample complexity of
˜O

(
n5

log log |Σ |
ϵ 5

)
, where

˜O hides a polynomial function of

logn, log
(
1

ϵ

)
The proof of Theorem 6.1 follows directly from Theorem 5.2, and the observation that in this

particular case the (conditional) samples for µi can be produced by conditioning only on the ith

index of Σn .
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7 CONCLUSION
In this paper we analyzed property testing of joint distributions in the conditional sampling model.

We considered the natural subcube conditioning and presented testers to test uniformity, identity

with a known distribution, identity with an unknown distribution, and independence of marginals

of query complexity polynomial in the dimension, thus avoiding the curse of dimensionality.
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A AWEAKER LOWER BOUNDWITH SIMPLE PROOF
Theorem A.1. For any 0 ≤ ϵ ≤ 1/2 any (ϵ, 1/3) − SubCond Uniformity-Tester has subcube-

conditional sample complexity Ω( 4

√
n/
√
ϵ). The lower bound holds even for the case when the domain

is {0, 1}n and the given distribution is a product of n independent (though not necessarily identical)

distributions.

Proof. Let µ be a product distributions over the domain {0, 1}n with marginals µ1, . . . , µn .
So µ = µ1 ⊗ · · · ⊗ µn . Note that since the µi are independent, if i , j then conditioning on µi
does not affect the samples we get from a µ j . Also since the µi are all distributions over a two
element set (namely {0, 1}) conditioning on any subset of {0, 1} also of no use. Thus drawing

subcube-conditional-samples from µ is as good as drawn samples (without any conditioning) from

µ.
So it is sufficient for us to prove that for any 0 ≤ ϵ ≤ 1/2 any (ϵ, 1/3) Uniformity-Tester has

sample complexity Ω( 4

√
n), when the domain is {0, 1}n and the given distributions are product

distributions.

The main idea of the proof is to use a standard technique from property testing where the

following lemma is used. The following lemma has been rewritten in the language and context of

this paper. A proof of the general statement of the lemma can be found in [Fischer 2004; Fischer

et al. 2004].

Theorem A.2. Let P be a property of distributions over σn
that we want to test. Suppose DY is a

distribution over all the distributions that satisfy the given property P , and let DN be a distribution

over all distributions that are ϵ-far from satisfying the property P . Let QY be the distribution over

outcomes of q samples when the samples are drawn from a distribution DY , that is drawn according

according toDY . Similarly, letQN be the distribution over outcomes of q samples when the samples are
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drawn from a distribution DN , that is drawn according to the DN . If the variation distance between

QY and QN is less than 1/3 then any (ϵ, 1/3)-Tester for the property P will have sample complexity

more than q.

In the context of our theorem we have the property P is “Uniformity". So the distribution DY is

the uniform distribution over the domain {0, 1}. Now let us define the distribution DN :

Let D1 be the distribution over {0, 1} where 1 is produced with probability (1/2 + 2

√ ϵ
n ) and

0 produced with probability (1/2 − 2

√ ϵ
n ). And let D0 be the distribution over {0, 1} where 1 is

produced with probability (1/2 − 2
√ ϵ

n ) and 0 produced with probability (1/2 + 2
√ ϵ

n ).

Consider the set of distributions D over {0, 1}n which are a product of n distribution each of

which is either D0 or D1. That is,

D = {µ1 ⊗ · · · ⊗ µn | for all i, µi is either D0 or D1}

Claim A.3. Any µ ∈ D is ϵ-far from uniform. That is, for any µ ∈ D we have

d(µ,U) ≥ ϵ

From Claim A.3 we see that all the distributions inD are ϵ-far from uniform. Thus we can take the

distribution D as our distribution DN . If a distribution is drawn from DN or DY , q samples from

the distribution would give q many {0, 1}-strings of length n. Note that if a distribution is drawn

from DY (that is, the distribution is the uniform distribution over {0, 1}n ) then the distribution of

the outcomes of q samples is a uniform distribution over {0, 1}nq . So, by theorem A.2, it is enough

to show that if µ is drawn from DN then the distribution of the outcomes (as a distribution over

{0, 1}nq ) is 1/3-close to uniform.

Note that µ is a distribution drawn from DN we can think of µ as µ1 ⊗ · · · ⊗ µn where each

µi is independently and uniformly choose from the set {D0,D1}. Let µ
q
be the distribution over

{0, 1}nq when q samples are drawn from µ. And now the following lemma completes the proof of

Theorem A.1.

Lemma A.4. If q ≤
4
√
n

20

√
ϵ then

d(µq ,U) ≤
1

3

.

□

A.1 Proof of Claim A.3
Let µ = µ1 ⊗ · · · ⊗ µn . Without loss of generality we will assume that all the µi ’s are the distribution
D1. That is 1 is produced with probability (1/2+ 2

√ ϵ
n ) and 0 produced with probability (1/2− 2

√ ϵ
n ).

For simplifying notations we will assume 1 is produced with probability (1/2 + ϵ ′) and 0 produced

with probability (1/2 − ϵ ′).
Since we knowd(µ,U) ≥ H (µ,U)2, it is enough for us to proveH (µ,U)2 ≥ ϵ . For any x ∈ {0, 1}n

let p(x) be the probability of getting x when drawn from µ. Note that the probability of getting x
when drawn fromU is 1/2n .

By definition we have

H (µ,U)2 =
1

2

∑
x ∈{0,1}n

(√
p(x) −

√
1/2n

)
2

= 1 −
∑

x ∈{0,1}n

(√
p(x)/2n

)
Now note that if x has k 1’s and (n − k) 0’s then p(x) = (1/2 + ϵ ′)k (1/2 − ϵ ′)n−k . So we have∑

x ∈{0,1}n

(√
p(x)/2n

)
=

1

2
n

n∑
k=0

(
n

k

)√
(1 + 2ϵ ′)k (1 − 2ϵ ′)n−k =

1

2
n

(√
(1 + 2ϵ ′) +

√
(1 − 2ϵ ′)

)n
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Now since (
√
1 + x +

√
1 − x) ≤ 2(1 − x 2

8
) for all x ≤ 1 so,

1

2
n

(√
(1 + 2ϵ ′) +

√
(1 − 2ϵ ′)

)n
≤

(
1 −

ϵ ′2

2

)n
≤

(
1 −

ϵ ′2n

2

+
ϵ ′4

4

(
n

2

))
.

The last inequality follows from the fact that (1 − x)n ≤ (1 − xn +
(n
2

)
x2). Now putting all the

things together we have

H (µ,U)2 ≥

(
1 −

(
1 −

ϵ ′2n

2

+
ϵ ′4

4

(
n

2

)))
≥

(
ϵ ′2n

2

−
ϵ ′4

4

(
n

2

))
If ϵ ′ = 2

√
ϵ/n then from the above inequality, and the fact that ϵ < 1/2, we have H (µ,U )2 ≥ ϵ .

A.2 Proof of Lemma A.4
Let us start with a claim. We defer the proof of the claim to the end of this section.

Claim A.5. If P and Q be two distributions over Σ and for all x ∈ Σ we have

Pr

P
(x) = (1 + ϵx ) Pr

Q
(x)

then we have

H (P ,Q)2 ≤
1

2

∑
x ∈Σ

ϵ2x PrQ
(x)

Claim A.5 helps to upper bound the Hellinger distance in terms of the ℓ∞ distance. Now let

Σ = {0, 1}q . And let µ
q
i be the distribution on Σ that is obtained by drawing q samples from µi .

Clearly, µq = µ
q
1
⊗ µ

q
2
⊗ · · · ⊗ µ

q
n . To prove that the variation distance of µq from uniform is less

than 1/3 we will first show that the ℓ∞ distance of µi from uniform is small then using Claim A.5

we get that the Hellinger distance of µ
q
i from uniform is small.. And then we can show that if all the

µ
q
i has small Hellinger distance from uniform then µq has small Hellinger distance from uniform

which would give an upper bound on the variation distance of µq from uniform.

Now the following claim upper bounds the ℓ∞ distance of µ
q
i from uniform.

Claim A.6. For all i and for all x ∈ Σ

| Pr
U
(x) − Pr

µqi
(x)| ≤

10ϵq2

2
qn

Or in other words for all x ∈ Σ if

Pr

µqi
(x) = (1 ± ϵx ) Pr

U
(x)

then |ϵx | ≤ 10ϵq2/n

By definition of Hellinger distance and variation distance we have

d(µq ,U) =
∑

x ∈{0,1}qn

����Prµq (x) − PrU (x)���� ≤ 2H (µq ,U)

Again we know that for any two product distributions P = P1 ⊗ · · · ⊗ Pn and Q = Q1 ⊗ · · · ⊗ Qn

H (P1 ⊗ · · · ⊗ Pn ,Q1 ⊗ · · · ⊗ Qn)
2 ≤

n∑
i=1

H (Pi ,Qi )
2.

Thus we have

d(µq ,U) ≤ 2

√√√(
n∑
i=1

H (µ
q
i ,U)

2

)
(3)
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From Equation 3 and Claim A.5 we have

d(µq ,U) ≤ 2

√√ n∑
i=1

1

2

∑
x ∈Σ

q(x)ϵ2x ,

where, q(x) = PrU(x). So q(x) = 2
q
. From Claim A.6 we have that ϵx = 10ϵq2/n. So we have

d(µq ,U) ≤ 2

√√
n∑
i=1

(10ϵq2/n)2

Thus if q ≤ 4

√
n/20
√
ϵ we have d(µq ,U) ≤ 2

√
1/40 which is less than 1/3

A.2.1 Proof of Claim A.5. Let p(x) = PrP (x) and q(x) = PrQ (x). By definition

H (P ,Q)2 =
1

2

∑
x ∈Σ

(√
p(x) −

√
q(x)

)
2

=

(
1 −

∑
x ∈Σ

√
p(x)q(x)

)
Now

√
p(x)q(x) = q(x)

√
1 + ϵx . Now it is easy to verify that for all x such that |x | ≤ 1 we have

√
1 + x ≥ 1 +

x

2

−
x2

2

So, from the above observation we have,√
p(x)q(x) = q(x)

√
1 + ϵx ≥ q(x)

(
1 +

ϵx
2

−
ϵ2x
2

)
Now since

∑
x q(x) = 1 and

∑
x qxϵx = 0 so we have

H (P ,Q)2 ≤

(
1 −

∑
x

q(x)

(
1 +

ϵx
2

−
ϵ2x
2

))
=

1

2

∑
x ∈Σ

q(x)ϵ2x

A.2.2 Proof of Claim A.6. Let x ∈ Σ has k 1’s and (q−k) 0’s. Since the µi is either the distribution
D1 with probability 1/2 or distribution D2 with probability 1/2, so probability of x appearing when

drawn from µ
q
i is

1

2

(
(
1

2

+ ϵ ′)k (
1

2

− ϵ ′)q−k + (
1

2

− ϵ ′)k (
1

2

+ ϵ ′)q−k
)

=
1

2
q
(1 + 2ϵ ′)k (1 − 2ϵ ′)q−k + (1 − 2ϵ ′)k (1 + 2ϵ ′)q−k

2

Using the inequality (1 + x)r ≥ 1 + xr (holds for x ≥ −1 and r ∈ N), we have

(1 + 2ϵ ′)k (1 − 2ϵ ′)n−k + (1 − 2ϵ ′)k (1 + 2ϵ ′)n−k ≥ (1 + 2kϵ ′)(1 − 2(q − k)ϵ ′) + (1 − 2kϵ ′)(1 + 2(q − k)ϵ ′)

The right hand side of the above inequality is equal to (2 − 8k(q − k)ϵ ′2). Thus we have

Pr

µqi
(x) ≥

1

2
q (1 − 4k(q − k)ϵ

′2) ≥
1

2
q

(
1 −

4q2ϵ

n

)
For the upper bound we shall use the following inequality. Let r ∈ N,x ≥ −1 be such that xr < 1.

It holds that

(1 + x)r ≤ 1 + xr + x2r 2

The above inequality can be easily proved using the following facts.

(1) When r ∈ N,x > 0 and rx < 1
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(a) it holds that (1 + x)r ≤ e
rx
.

(b) as 0 ≤ rx < 1 it holds that e
rx ≤ 1 + xr + x2r 2.

(2) When r ∈ N,−1 ≤ x ≤ 0 it holds that (1+x)r ≤ 1+xr +x2r 2 (can be proved using induction

on r ).

Since ϵ ′ = 2

√
ϵ/n and q ≤ 4

√
n, ϵ ′q < 1. Hence, for all k ≤ q,

(1 + 2ϵ ′)k (1 − 2ϵ ′)q−k ≤ (1 + 2kϵ ′ + 4k2ϵ ′2)(1 − 2(q − k)ϵ ′ + 4(q − k)2ϵ ′2),

(1 − 2ϵ ′)k (1 + 2ϵ ′)q−k ≤ (1 − 2kϵ ′ + 4k2ϵ ′2)(1 + 2(q − k)ϵ ′ + 4(q − k)2ϵ ′2)

and thus

(1 + 2ϵ ′)k (1 − 2ϵ ′)q−k + (1 − 2ϵ ′)k (1 + 2ϵ ′)q−k

2

≤
(
1 + 2ϵ ′2q2 + q4ϵ ′4

)
Since ϵ ′ = 2

√
ϵ/n and q ≤ 4

√
n so we have(
1 + 2ϵ ′2q2 + q4ϵ ′4

)
≤

(
1 +

10ϵq2

n

)
And thus we have

1

2
q

(
1 −

4q2ϵ

n

)
≤ Pr

x←µqi
(x) ≤

1

2
q

(
1 +

10ϵq2

n

)
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