
Crooked Indifferentiability of Enveloped XOR
Revisited

Rishiraj Bhattacharyya1, Mridul Nandi2, and Anik Raychaudhuri2

1 NISER, HBNI, India, rishirajbhattacharyya@protonmail.com
2 Indian Statistical Institute, Kolkata, India,
mridul.nandi@gmail.com,anikrc1@gmail.com

Abstract. In CRYPTO 2018, Russell,Tang, Yung and Zhou (RTYZ)
introduced the notion of crooked indifferentiability to analyze the secu-
rity of a hash function when the underlying primitive is subverted. They
showed that the n-bit to n-bit function implemented using enveloped
XOR construction (EXor) with 3n+ 1 many n-bit functions and 3n2-bit
random initial vectors can be proven secure asymptotically in the crooked
indifferentiability setting. We identify several major issues and gaps in
the proof by RTYZ, We argue that their proof can achieve security only
in a restricted setting. We present a new proof of crooked indifferen-
tiability where the adversary can evaluate queries related to multiple
messages. Our technique can handle function-dependent subversion.

Keywords. Crooked Indifferentiability, Subverted Random Oracle, Simulator,
Enveloped XOR Hash.

1 Introduction

Blackbox Reduction and Kleptographic attack. Many of the modern
cryptographic constructions are analyzed in a modular and inherently black-
box manner. The schemes or protocols are built on underlying primitives only
exploiting the functionality of the primitives. While analyzing the security, one
shows a reduction saying, a successful attack on the construction will lead to an
attack against the underlying primitive. Unfortunately, this approach completely
leaves out the implementation aspects. While the underlying primitive may be
well studied, a malicious implementation may embed trapdoor or other sensitive
information that can be used for the attack. Moreover, such implementation
may well be indistinguishable from a faithful implementation [21]. These types
of attacks fall in the realm of Kleptography, introduced by Young and Yung
[21]. While the cryptographic community did not consider kleptography as a
real threat, the scenario has changed in the past few years. The kleptographic
attack has been a real possibility in the post-Snowden world. A line of work has
appeared aiming to formalize and provide security against kleptographic attack
[2,10,17,18]. Specifically, in [2], Bellare, Paterson, and Rogaway showed that it
is possible to mount algorithm substitution attacks against almost all known

symmetric key encryption schemes to the extent that the attacker learns the
secret key.

Random Oracle and Indifferentiability. The Random Oracle methodol-
ogy is a very popular platform for proving the security of cryptographic con-
structions in the black-box fashion. In this model, all the parties, including the
adversary, are given access to a common truly random function. One proves the
security of a protocol assuming the existence of such a random function. Dur-
ing the implementation of the protocol, the random function is replaced by a
hash function H. The Indifferentiability framework and the composition theo-
rem [13] assert that if the hash function H is based on an ideal primitive f ,
and Indifferentiable from a random function, then the instantiated protocol is
as secure as the protocol in the random oracle model (assuming the security
of the ideal primitive f). Indifferentiability from Random Oracle has been one
of the mainstream security criteria of cryptographic hash functions. Starting
from the work of Coron, Dodis, Malinaud, and Puniya [9], a plethora of results
[7,4,5,12,1,6,15,14,16] have been proven, showing indifferentiability of different
constructions based on different ideal primitives.

Crooked Indifferentiability. In CRYPTO 2018, Russel, Tang, Yung and
Zhou [19] introduced the notion of crooked indifferentiability as a security notion
for hash functions in the kleptographic setting. Like classical indifferentiability,
the game of crooked-indifferentiability challenges the adversary to distinguish
between two worlds. In the real world, the adversary has access to the underlying
ideal primitive f , and the construction C, which has subroutine access to f̃ , the
subverted implementation of f .3 The implementation f̃ on input an element
x, queries the function (possibly adaptively) at maximum q̃ many points and,
based on the transcript, decides the evaluation of x. As the adversary likes the
subversion to go undetected, it is assumed that f̃ differs from f only on some
negligible fraction (ε) of the domain.

In the ideal world, the construction is replaced by a Random Oracle F . The
role of f is played by a simulator with oracle access to F and the subverted
implementation f̃ . The job of the simulator is to simulate f in such a way that

(C f̃ , f) is indistinguishable from (F , SF,f̃). To avoid trivial attacks, the frame-
work allows a public random string R to be used as the salt in the construction.
The string R is fixed after the adversary publishes the implementation but stays
the same throughout the interaction. All the parties, including the simulator
and the adversary, get R as part of the initialization input. We note that even
in the weaker setting of Random Oracles with auxiliary input, a random salt is
required to prove security [8,11].

Enveloped Xor Construction and its crooked-indifferentiability.
We recall the Enveloped XOR construction. We fix two positive integers n and l.
LetD := {0, 1, . . . , l}×{0, 1}n. Let H be the class of all functions f : D → {0, 1}n.

3 The domain extension algorithms are simple and the correctness of their implemen-
tations are easy to verify.

2

For every x ∈ {0, 1}n and an initial value R := (r1, . . . , rl) ∈ ({0, 1}n)l, we define

gR(x) =

l⊕
i=1

f(i, x⊕ ri) and EXor(R, x) = f(0, gR(x)).

In [19], Russel et al proved crooked-indifferentiability of the enveloped-xor con-
struction. Their analysis is based on an interesting rejection sampling argument.

1.1 Our Contribution

Another Look at Russel et al.’s proof. We uncover that the techniques of
[19], while novel and interesting, bear significant shortcomings. The consistency
of the simulator is not proven. Moreover, their technical treatment requires that
the subversion for the final function f(0, ·) be independent of gR. In other words,
the proof is applicable against a restricted class of subversion. Finally, the proof
does not consider the messages queried to F . We elaborate the issues in Section 3.

A new proof of the crooked-indifferentiability of Enveloped XOR. We
present a new proof of the crooked-indifferentiability of Enveloped XOR. Inter-
estingly, our techniques do not involve heavy technical machinery. Rather, we
identify core domain points related to functions and use simple tools like Markov
inequality.

1.2 Overview of Our Technique.

We observe the Enveloped XOR (EXoR) construction is in the class of General-
ized Domain Extensions considered in [5]. It is known that for a GDE construc-
tion with independent functions and preimage awareness, the indifferentiability
advantage is bounded by the probability that the final chaining query is not
fresh. However, EXoR construction instantiated with the crooked functions (de-

noted by ẼXor) is not part of GDE. The main issue is that the final output of

ẼXor need not be the output of f(0, ·) evaluation, as required by the condition
of GDE.

We consider an intermediate construction EXor(R,m) = f(0, g̃R(m)). In
other words, the intermediate construction restricts that the finalization function
f(0, ·) is not subverted. EXor is a GDE construction and crooked-indifferentiability
of EXor can be proved following the structure of [5]. In particular, the generic
simulator of [5], adopted for EXor along with access to f̃ work out here along
with the consistency arguments. Our proof is modularized via the following two
claims.

– Claim 3 shows distinguishing advantage for (f,EXoR) and (f, ẼXoR) is bounded
by probability of hitting a crooked point or domain point for f0 (Bad1).

3

– Claim 4 shows the distinguishing advantage of intermediate world (f,EXoR)
and the ideal world of crooked indifferentiability is bounded by the proba-
bility of Bad2 event. This event is classified into two main categories. In the
first category, while responding to a query to the primitive (or the simulator),
input g̃R(m) appeared already in the transcript. In the second category, the
input g̃R(m) appeared in the extended transcript which includes all queries
of a subverted computation f̃(x) of a crooked point x.

The challenge remaining is to bound the probability of the bad events. Our
proof works with a counting approach. We say a point α ∈ {0, 1}n is robust with
respect to a function f , if all points which queries α is not subverted with all
but negligible probability, if the output f(α) is re-sampled. A point is good if it
is queried by only a few robust and un-crooked points. By averaging argument,
we show that for overwhelming fraction of candidate f , R, for every message m,
there will exist an index i such that m ⊕ ri is good for function f(i, ·). Now,
we can say that even though f(i,m⊕ ri) was queried by other points, they are
robust. If we re-sample at (i,m⊕ri) the subverted outputs of those robust points
will not change. Thus, we can talk about g̃R(m) independently to the outputs
of the function f̃(0, ·).

Finally, we shall show that the output distribution of g̃R(m) is close to uni-
form. We could find a rejection resampling lemma on two or more points, and
argue the uniformity of g̃R(m). However, we simplify things further. We observe
that with high probability over the output values of f(i,m⊕ ri) for every i for
which m⊕ri is good in f , the transcript of the previous internal queries remains
unchanged. Hence, we consider the conditional probabilities by conditioning on
all possible transcripts and take union bound to show near uniformity of g̃R(m).

Relation of GDE constructions with Our Results and Further Uses. A
majority of this work focuses on EXor construction which is a GDE construction
(defined in [5]). GDE constructions cover a wide range of domain extension
algorithms. We believe that many ideas developed in this result to deal with the
EXor construction can be extended to investigate the crooked-indifferentiability
of different GDE constructions. However the bad events and their analysis will
depend on the particular construction being investigated.

Revised Proof by Russel et al. After we communicated our findings to the
authors of [19], they acknowledged the issues, and uploaded a major revision in
eprint [20]. Our proof is done independently and significantly differ from their
revised proof in some crucial aspects.

2 Notations and Preliminaries

Notations. Let N = {0, 1, . . .} be the set of natural numbers. If k ∈ N, then
{0, 1}k denotes the set of all k-bit binary strings. If x and y are two strings

4

xy denote the concatenated string.We write x
$←− S to denote the process of

choosing x uniformly at random from a set S and independently from all other
random variables defined so far. For a positive integer l, we use (l] and [l] to
denote the set {1, · · · , l} and {0, 1, . . . , l} respectively. The positive integer n is
our security parameter and we write R := {0, 1}n.

Class of Functions. H := HD,n denotes the set of all n-bit functions from D to
R. In this paper we mainly consider D :=: [l]×{0, 1}n and let f : [l]×{0, 1}n →
R denotes a family of l many functions from {0, 1}n to itself. We often use
the shorthand f to denote the family {f0 := f(0, ·), · · · , fl := f(l, ·)} when the
function family is given as oracles.

For any tuples of pairs τ = ((x1, y1), . . . , (xs, ys)) we write D(τ) (called do-
main of τ) to denote the set {xi : 1 ≤ i ≤ s}. We say a function f agrees with τ
if for all (x, y) ∈ τ , f(x) = y. For every x ∈ D, α ∈ R, we use f |x→α(or simply
fα whenever x is understood) to denote the following function:

f |x→α(y) =

{
f(y) if x 6= y
α if x = y

.

Adversaries and Distinguishing Advantage. An adversary A is an algo-
rithm possibly with access to oracles O1, . . . ,O` denoted by AO1,...,O` . The ad-
versaries considered in this paper are computationally unbounded. The com-
plexities of these algorithms are measured solely on the number of queries they
make. An algorithm A having access to an oracle is called q-query algorithm if
it makes at most q queries to its oracle. Similarly, an oracle algorithm having
access to two oracles is called (q1, q2)-query algorithm, if it makes at most q1
and q2 queries to its first and second oracles respectively. Adversarial queries
and the corresponding responses are stored in a transcript τ . So, D(τ) denotes
the list of inputs (queries) in the transcript.

Definition 1 (Distinguishing Advantage). Let F l and Gl be two l-tuples of
probabilistic oracle algorithms for some positive integer l. We define advantage
of an adversary A at distinguishing F l from Gl as

∆A(F l ; Gl) =
∣∣Pr[AF1,F2,··· ,Fl = 1]− Pr[AG1,G2,··· ,Gl = 1]

∣∣ .
If A makes a total of q queries, it is called a q-query distinguisher.

2.1 Modeling Subversion Algorithms and Crooked-Indifferentiability

We recall the related terms and notations introduced in [19] in our terminolo-
gies. A (q, q̃) implementor is an q-query oracle algorithm AO. A outputs the
description of another oracle algorithm F̃O (called subversion algorithm) which
makes at most q̃ many queries to its oracle. For a correct subversion algorithm
of a function f ∈ H := HD,n, we must have f̃ := F̃ f = f . However, a crooked-
implementor may not behave correctly.

5

Definition 2 (crooked implementer). A (q, q̃) implementer A1 is called ε-

crooked for a function family H, if for every f ∈ H and f̃ ← Af1 ,

Pr
α

$←−D
[f̃(α) 6= f(α)] ≤ ε.

Let τ0 denote the transcript of oracle queries of Af1 . We may assume that ε is
negligible4 and the transcript τ0 is hardwired in f̃ and all the q̃ queries made by
f̃ are different from D(τ0) (as the response is known from the transcript). The
subversion algorithm f̃ on input x queries γ1(x), γ2(x), . . . , γq̃(x), and based on

the query-responses outputs f̃(x). Without loss of generality, we assume γ1(x) =
x. We write Q(x) := Qf (x) to denote the set of all queries as defined above. We
write

Q−1f (y) := {x : y ∈ Qf (x)},

the set of all points x, in which the computation of f̃(x) queries y. The set
does not depend on the value of f(x). Mathematically, let fβ = f |y→β then
Q−1f (y) = Q−1fβ (y) for all β.

Crooked Indifferentiability. A crooked distinguisher is a two-stage adversary;
the first stage is a subverted implementor and the second stage is a distinguisher.

Definition 3 (crooked distinguisher). We say that a pair A := (A1,A2) of
probabilistic algorithms ((q1, q̃, ε), q2)-crooked distinguisher for H if

(i) A1 is a ε-crooked (q1, q̃) implementer for H and
(ii) A2(r, τ0, ·) is a q2-query distinguisher where r is the random coin of A1,

and τ0 is the advice-string, the transcript of interaction of A1 with f .

Note that the random coin r of A1 and the transcript of A1 are shared with A2

to emphasis that A1 and A2 are joint adversary working in two different stages.

Definition 4 (H-crooked-indifferentiability [19]). Let F be an ideal prim-
itive and C be an initial value based F-compatible oracle construction. The
construction C is said to be ((q1, q̃), (q2, qsim), ε, δ)-crooked-indifferentiable
from F if there is a qsim-query algorithm S (called simulator) such that for all
((q1, q̃, ε), q2)-crooked distinguisher (A1(r), A2(r, ·, ·)) for H, we have

∆A2(r,τ0,R)

(
(f, C f̃ (R, ·)) ; (SF,F̃ (τ0, R),F)

)
≤ δ (1)

where τ0 is the advice string of Af1 and R is the random initial value of the
construction sampled after subverted implementation is set.

4 Given an implementation, one may check the correctness of the algorithm by com-
paring the outputs of the implementation with a known correct algorithm. More

precisely, we sample α1, . . . , αt
$←− {0, 1}m and then for all 0 ≤ i ≤ l, we check

whether f̃(αi) = f(αi) holds. If it does not hold, the implementation would not be
used. It is easy to see that for ε-crooked implementation the subversion would not
be detected with probability at least (1 − ε)t. So for a negligible ε, this probability
would be still close to one for all polynomial function t and so the implementation
can survive for further use.

6

C(R, ·)F̃f S(τ̃ , R) F

F̃

A2(r, τ̃ , R)

Fig. 1: The crooked-indifferentiability notion. In the first phase of real world, A1

interacts with f and returns an oracle algorithm F̃ (which would be accessed
by the construction C in the second phase). In the second phase the random
initial value R will be sampled and given to construction C and also to A2. In
ideal world, simulator SF gets the transcript of the first phase as advice string,
blackbox access to the subverted implementation F̃ and the initial value R.

Two-Stage Distinguishing Game. Now we explain the distinguishing game.
In the first stage, Af1 outputs F̃ after interacting with a random oracle f as
discussed before. A random initial value R, for the hash construction C is sam-
pled. In the real world, A2 interacts with the same f of the first stage and the

construction C f̃ (R, ·). In the ideal world, the simulator S gets the advice-string
τ0, the initial value R and blackbox access to the subverted implementation F̃
and a random oracle F . Simulator is aimed to simulate f so that behavior of

(f, C f̃) is as close as (S,F) to the distinguisher A2.

Convention on Crooked Distinguishers: Note that there is no loss to as-
sume that both A1 and A2 are deterministic (so we skip the notation r) when we
consider computational unbounded adversary5. We also assume that A2 makes
all distinct queries and distinct from the queries made by A1 (as the simulator
has the advice string and so it can respond honestly). We skip the notation τ0 as
an input of A2 as it is fixed throughout the game. As the advice string is fixed,
we consider it as part of the transcript. Specifically, the transcript τ0, view of
A2 at the start of the second stage is set as the advice string τ0. We fix the ad-
vise string τ0 throughout the paper. We write f to denote the random function

agreeing on τ0. In other words, f
$←− Γτ0 = {f : f(x) = y, (x, y) ∈ τ0}.

Enveloped XOR Construction. Recall that, in the real world, the dis-

tinguisher is interacting with the subverted construction ẼXor which is defined
as

ẼXor(R,M) = f̃(0, g̃R(M)) where g̃R(M) =

l⊕
i=1

f̃(i,M ⊕ ri).

5 A1 can fix the best random coin for which the distinguishing advantage of A2 is
maximum.

7

We also define a hybrid construction EXor[f](R,M) = f(0, g̃R(M)). Now con-
sider an adversary A interacting with (f,EXor := EXor[f]).

Assumption on Adversary. For all primitive queries of the form (j, x) with
j > 0, we return EXor(m) and all responses of all queries (a, αa), a ∈ [l] where
αa = m + Ra and m = x + Rj . Note that simulator can compute m and so re-
sponding EXor(m) honestly for simulator would not be a problem. Moreover, we
assume that adversary disclose all queries for the construction to the simulator.

Transcript of Interaction. For j ≥ 0, let Trj := (R, τj , πj) denote the tran-
script (random variable due to randomness of f only) of A after j queries where
R is the initial value of the construction, and τj , πj denote the query-responses
for the primitive and the construction respectively. Note that τj contains τ0 for
all j.

3 Revisiting the Crooked Indifferenitability Security of
EXoR [19].

A brief detour: classical indifferentiability simulator for EXor. Before
describing the crooked indifferentiability simulator, we would like to briefly recall
the principle behind the indifferentiability simulator and proof principles behind
EXor construction in the classical setting.

The goal of the simulator is to simulate each f(i, ·) honestly so that for every
queried message m, it holds that EXor(R,m) = F(m) for all queried m. Without
loss of generality, assume that whenever the adversary makes queries f(i, x) for
i > 0, it also makes queries f(j, x ⊕ ri ⊕ rj) for all j > 0 simultaneously. In
other words, it makes a batch query of the form (f(j,m ⊕ rj))1≤j≤l for some
m ∈ {0, 1}n. We simply say that the adversary A queries m to gR and obtains
responses (f(j,m⊕ rj))1≤j≤l.

On receiving a batch query gR(m), the simulator will honestly sample outputs
for the corresponding f(i,m⊕Ri) queries for all i ∈ (l], and compute gR(m) by
xoring those sampled outputs. Also, the simulator will save the queried m along
with the computed gR(m) in a list L. For a f(0, x) query, the simulator will first
search in L, whether for some m, it has given x = gR(m) as output. If yes, the
simulator simply returns F(m). If no such entry exists, the simulator samples
an output z uniformly at random and returns z.

Now, we briefly recall how the indifferentiability is proved for this simulator.
There are two bad events.

– for distinct m,m′, it holds that gR(m) = gR(m′). In this case, the simulator,
on query f(0, gR(m)) can not be consistent with both F(m) and F(m′) with
any significant probability.

– For a batch query gR(m) the output is such that it matches with a previous
f(0, .) query. In this case, the simulator has already given output to the
f(0, .) query which, with all but negligible probability, is not equal to F(m).

One can indeed summarize these bad events as one; gR(m) ∈ E, where E is
the set of f(0, .) queries made by the adversary.

8

The Simulator for Crooked Indifferentiability. We now describe the main
indea behind the simulator in the crooked indifferentiability setting. The same
principle was used in [19]. Note, here the main goal of the simulator is different. It

needs to simulate f
$←− H as honestly 6 as possible such that ẼXor(R,m) = F(m)

for all queried m. Thus the simulator needs to ensure that the output of the
random oracle matches with the subverted implementation of EXor.

The simulator maintains a list L of pairs (α, β) to record f(α) = β for α ∈ D
and β ∈ {0, 1}n. It also maintains a sub-list LA ⊆ L consisting of all those pairs
which are known to the distinguisher. Both lists are initialized to z (the advice-
string in the first stage which we fix to any tuple of q1 pairs). L0 = LA0 = z. Now
we describe how the simulator responds.

1. (Query f(0, w)) We call this query a Type-1 Query. Type-1 Queries are
returned honestly. If ((0, w), y) ∈ L for some y, the simulator returns the
same y. Otherwise, it samples y uniformly from {0, 1}n, updates the list L
and LA, and returns y.

2. (Query gR(m)) We call this Type-2 Query. For a query gR(m) (i.e. batch
query) the simulator computes f̃(αj) for all j, one by one by executing the

subverted implementation F̃ , where αj = (j,m⊕Rj). During this execution,
simulator responds honestly to all queries made by the subverted implemen-
tation and updates the L-list by incorporating all query responses of h. How-
ever, it updates LA list only with (αj , f(αj)) for all j. Let g̃ :=

⊕
j f̃(αj).

If (0, g̃) ∈ D(L), the simulator aborts . If the simulator does not abort, it
makes a query F(m) and adds ((0, g̃),F(m)) into the both lists L and LA.

For f(0, w) made by A2 where w = g̃R(m) for some previous query m to gR, the
simulator responds as F(m).

Cautionary Note. Even though F is a random oracle, we cannot say that the
probability distribution of the response of (0, g̃) in the ideal world is uniform.
Note that, the adversary can choose m after making several consultations with
F . In other words, m can be dependent on F . For example, the adversary can
choose a message m for which the last bit of F(m) is zero. Thus, the response for
the query (0, w) always has zero as the last bit (which diverts from the uniform
distribution). However, the randomness can be considered when we consider joint
probability distribution of all query-responses.

Transcript: Now we describe what is the transcript to the distinguisher and for
the simulator in more detail. First, we introduce some more relevant notations.

1. Let LF denote the set of all pairs (m′, z̃) of query response of F by A2.

2. Let Lg denote the set of all pairs (m,βl) of query response of gR oracle
(batch query) made by A2 to the simulator where βl := (β1, . . . , βl) and

6 By honestly we mean perfectly simulating a random function. If the responses are
already in the list it returns that value, otherwise, it samples a fresh random response
and includes the input and output pairs in the list.

9

βj = h(j,m⊕Rj) for all j. According to our convention all these m must be
queried to F beforehand.

3. As we described, we also have two lists, namely L and its sublist LA, keeping
the query responses of h oracle.

Now we define the transcript and partial transcript of the interaction. We
recall that q1 is the number of queries in the first stage and A2 is a (qF , q2)-query
algorithm. Let q = q2 + qF For any 1 ≤ i ≤ q, we define the partial transcript
of A and the simulator as τAi := (LFi , L

A
i) and τSi := (Li, L

g
i) respectively,

where LFi , L
A
i , Li, L

g
i denote the contents of the corresponding lists just before

making ith query of the distinguisher. So when, i = 1, LA1 = L1 = z and the
rest are empty and when i = q + 1, these are the final lists of transcripts. Let
τi := (τAi , τ

S
i) and τ := (τA, τS) denote the joint transcript on ith query or after

completion respectively. As the adversary is deterministic, the simulator is also
deterministic for a given h and F , and we have fixed z, a (partial) transcript
is completely determined by the choice of R, h and F (in the ideal world). We
write (R, f,F) ` τSi if the transcript τSi is obtained when the initial value is
R, the random oracles are F and f . We similarly define (R, f,F) ` τAi and
(R, f,F) ` τi.

3.1 Techniques of [19]

Overview of the techniques in [19]. We assume, without any loss of gener-
ality that the second stage adversary A2 queries m to F before it queries to gR
oracle. In addition, like before, we assume that it makes batch queries.

For every query number i, we define a set Ei := D(Li) ∪ subvf where subvf
is the set of all crooked elements for f . The event Badi holds if and only
if (0, g̃R(mi)) ∈ Ei where mi denotes the ith query of A (made to gR ora-
cle of the simulator). So, the crooked indifferentiable advantage is bounded by∑q2
i=1 Pr(g̃R(mi) ∈ Ei). The authors wanted to show that the distribution of

g̃R(mi) is almost uniform. They proposed the following theorem.

(Theorem 5 from [19]). With overwhelming probability (i.e., one minus a neg-
ligible amount) there exists a set Rτ0 ⊆ ({0, 1}n)l and for every i, a set of tran-
scripts T Ai (before ith query) such that for all R ∈ Rτ0 , τi := (LFi , L

A
i) ∈ T Ai ,

and m 6∈ D(Lgi),

Pr
f

[(0, g̃R(m)) ∈ Ei | (R, f,F) ` τi] ≤ poly(n)
√
|Ei|+ negl(n).

The authors claimed that crooked indifferentiability of EXor can be derived
from the above theorem. To describe the issues we need to dive into the main
idea which is to show that g̃R(m) behaves close to the uniform distribution over
{0, 1}n. Thus the above probability would be negligible as q1/2

n and |subvf |/2n
is negligible. By using Markov inequality, authors are able to identify a set of
overwhelming amount of pairs (R, f), called unpredictable pair, such that for any
unpredictable (R, f) all m, there exists an index i such that

10

1. Prβ [αi ∈ subvf | f(αi) = β] is negligible and
2. αj /∈ Q−1f (αi) for all j 6= i, where αj = m⊕Ri.

Thus, if we resample β = f(αi) then with overwhelming probability f̃ |αi→β(αi) =
f |αi→β(α) (i.e. αi is not crooked and returned a random value) and all corre-
sponding values for indices j different from i will remain same. So, g̃R(m) = β+A
where A does not depend on choice of β. Thus, the modified distribution is close
to uniform (as almost all values of β will be good). In particular the authors
made the following claim:

Claim 1 Under the modified distribution (i.e. after resampling), Pr[g̃R(m) ∈
E1] ≤ q1/2n + ε+ pn where pn denotes the probability that a random pair (R, f)
is not unpredictable.

As the choice of i depends on the function f and so a new rejection resam-
pling lemma is used to bound the probability of the event under the original
distribution (i.e. before resampling).

Lemma 1 (Rejection Resampling [19]). Let X := (X1, . . . , Xk) be a random
variable uniform on Ω = Ω1 × Ω2 × · · · × Ωk. Let A : Ω → (k] and define
Z = (Z1, . . . , Zk) where Zi = Ai except at j = A(Xk) for which Zj is sampled
uniformly and independently of remaining random variables. Then for any event
S ⊆ Ω, it holds that

|S|/|Ω| ≤
√
kPr(Z ∈ S)

With this rejection resampling result and the Claim 1, the authors concluded
the following under original distribution:

Pr
h∗

(g̃R(x) ∈ E1) ≤
√
l · Pr

resampled h
(g̃R(x) ∈ E1) ≤

√
l · (q1/2n + ε+ pn).

3.2 Issues with the technique of [19]

Now we are ready to describe the issues and the limitations of the techniques in
[19]. To prove the general case (i.e. for any query), the authors provide a proof
sketch where they argued that with an overwhelming probability of realizable
transcript T and for all τ ∈ T , Pr(g̃R(mi) ∈ Ei | τ) is negligible.

The number of queries to F is essential. An incompleteness of the proof
of [19] comes from the fact that the analysis does not consider the F queries
of the distinguisher. The bound is almost vanishing if q1 = 0 and q2 = 2 and
there is no crooked point. However, a distinguisher can search for m 6= m′ such
that F(m) = F(m′). Conditioned on collision at the final output, the event
gR(m) = gR(m′) holds with probability about 1/2. On the other hand, for the
honest simulation of all f values, g value will collide with very low probability.
If the adversary can make 2n/2 many queries to F , the above inconsistency can
be forced. Hence, the probability upper bound of Theorem 5 of [19] can not be
independent of the number of queries made to F .

11

Inconsistency for Multiple Queries: Controlling query dependencies
for the same index. Authors claimed that for all unpredictable (R, h), for all
m, an index i exists on which the resampling can be done without affecting the
transcript. Recalling the notion of unpredictable (R, h) we see that the resam-
pling is done on an index i, that is honest (f̃(i,m ⊕ Ri) = f(i,m ⊕ Ri), and
f(i,m⊕ Ri) is not queried by f(j,m⊕ Rj) for any other j. From here, the au-
thors argued that the transcript of the interaction remains same, if we resample
at such i. This claim is justified for a single message and not for multiple queries.
We note that it is easy to construct a subverted implementation F̃ for which all
inputs of f for a batch response are queried during some other previous query.
For example, if it queries f(i, x ⊕ 1n) for an input (i, x), and the distinguisher
makes two batch queries queries, g̃R(m⊕ 1n), and g̃R(m). The simulator, while
simulating g̃R(m ⊕ 1n) responds to all the queries made by f̃(i,m ⊕ 1n ⊕ Ri),
and in particular the value of f(i,m⊕ Ri) is now gets fixed. So an appropriate
analysis was missing in case of multiple queries.

The bad event Ei depends on the function f . The main technical claim
of [19] that Prresampled f

(g̃R(x) ∈ E) is small because g̃R(x) is uniformly dis-

tributed under resampling distribution of f and size of E is negligibly small. How-
ever the crooked set of f(0, ·) may depend on the other functions f(1, ·), . . . , f(·).
Thus the event E is not independent of g̃R(x). In particular, one cannot upper
bound the Pr(g̃R(x) ∈ E) as |E|/2n . This is one of the crucial observation which
actually makes the crooked security analysis quite a complex task.

4 Basic Setup: Good Pairs and Critical Set

Subverted inputs. For a function f : D → R agreeing on τ0, we define

subvf = {x | x ∈ Dom(τ0) ∨ f̃(x) 6= f(x)},

union of the set of all subverted points for the function f and the Dom(τ0). We
consider elements of the domain of τ0 as subverted points as the outputs of those
have no entropy and is hard coded into an implementation. Thus, we treat all
those inputs as subverted points. Clearly, for all function f ,

|subvf | ≤ q1 + ε|D|.

where q1 denotes the size of τ0. Let ε1 := ε+ q1/|D|.

Definition 5 (robust point). Let f agree on τ0. A point y is called robust in
f (or the pair (y, f) is called robust) if for all x ∈ Q−1f (y),

Pr
β

[
x ∈ subvfβ

]
≤
√
ε1

where β
$←− R and fβ := f |y→β.

Note that robustness of y in f does not depend on the value f(y). In other words,
if y is robust in f then so in f |y→β for all β.

12

Definition 6 (popular point). A point y 6∈ Dom(τ0) is called popular for a

function f if |Q−1f (y)| > ε
−1/4
1 .

Recall that the subversion algorithm f̃ makes at most q̃ many queries for any
y. So,

∑
y |Q

−1
f (y)| ≤ q̃|D|. Using the simple averaging argument the number of

popular points are at most q̃ε
1
4
1 |D|.

Pr
x,f

[x is popular in f] ≤ q̃ε
1
4
1 (2)

We call the robust pair (y, f) good if (1) y is not popular for f and (2) for all
x ∈ Q−1f (y), x 6∈ subvf . In particular for good (y, f), it holds that y 6∈ subvf and
y 6∈ subvfβ with high probability over randomness of β where fβ := f |y→β .

Lemma 2. For a random y
$←− D, we have

Pr
y,f

[(y, f) is not good] ≤ 3q̃ε
1
4
1 .

Proof. We define two indicator functions:

d(x, f) =

{
1, if x ∈ subvf

0, otherwise
dj,β(x, f) =

1, if x ∈ subvf |
γ
(x)
j
→β

0, otherwise.

In other words, d(x, f) simply indicator function for capturing crooked points
and dj,β(x, f) is an indicator function capturing whether a point x becomes
crooked for f after replacing the jth query output by β. For 1 ≤ j ≤ q̃,
let Dj(x, f) = Eβ(dj,β(x, f)). For any function g ∈ Γτ0 , let Sx,g := {(f, β) :
f |
γ
(x)
j →β

= g}. It is easy to see that we have |Sx,g| = 2n. Now, for each j,

E
x,f

(
Dj(x, f)

)
= E
x,f

E
β

(
dj,β(x, f)

)
=
∑
x,f,β

Pr(f) Pr(x) Pr(β) · dj,β(x, f)

= 2−n
∑

(f,β)∈Sx,g

∑
x,g

Pr(g) Pr(x) · d(x, g)

=
∑
x,g

Pr(g) Pr(x) · d(x, g)

= E
x,g
d(x, g) ≤ ε+

q1
|D|

:= ε1

Applying Markov inequality, we get for every j ∈ (q̃]

Pr
x,f

[
Dj(x, f) ≥ ε

1
2
1

]
≤

Ex,f
(
Dj(x, f)

)
ε

1
2

≤ ε
1
2
1 (3)

13

We recall there are three ways x can be not good in f .

Pr
f,x

[(x, f) is not good] ≤ Pr
f,x

[x is popular for f] +

Pr
f,x

[x is queried by some point in subvf] +

Pr
f,x

[(x, f) is not robust | x is not popular for f]

As there are at most ε1|D| many points in subvf ,

Pr
f,x

[x is queried by some point in subvf] ≤ q̃ε1.

From the definition of robust points and Equation 3

Pr
x,f

[x is non robust in f | x is not popular for f] ≤ ε−1/41

q̃∑
j=1

Pr
x,f

[
Dj(x, f) ≥ ε

1
2
1

]
≤ q̃ε

1
4
1

Adding above two inequalities and Equation 2

Pr
f,x

[x is not good in f] ≤ q̃
(
ε1 + ε

1
4
1 + ε

1
4
1

)
≤ 3q̃ε

1
4
1

ut

Critical Set. We consider a set G of pairs (R, f) of initial values R and functions
f satisfying the condition that for every m ∈ {0, 1}n there exists 1 ≤ i ≤ l such
that (αi := (i,m⊕Ri), f) is good. The following lemma says that for a uniform
random string R (initial value) and a randomly chosen function f agreeing on
τ0, with high probability (R, f) is in the critical set.

Lemma 3. Let q̃ ≤ 2n/2, ε1 ≤ 1
216 and ` > 2n. It holds that

Pr
R,f

((R, f) 6∈ G) ≤ 3q̃ε
1/8
1 + 2−n.

Proof. We know that Prf

[
Prx[(x, f) is not good] > ε

1/8
1

]
≤ 3q̃ε

1/8
1 . We say f is

convenient if Prx[(x, f) is not good] ≤ ε1/81 . Fix a convenient f

Pr
R

[(R, f) 6∈ G]

≤
∑
m

l∏
i=1

(
Pr
Ri

[(i,m⊕Ri) is not good in f]

)
≤ 2n ×

(
ε
1/8
1

)l
≤ 1/2n.

14

In the first step, the sum is taken over m ∈ {0, 1}n. The last inequality follows
from l > n, and ε1 ≤ 1

216 . Hence, we have

Pr
R,f

((R, f) 6∈ G) ≤ Pr
f

[f is not convenient] + Pr
R

[(R, f) 6∈ G|f is convenient]

≤ 3q̃ε
1/8
1 + 1/2n. ut

5 Crooked-Indifferentiability of Enveloped XOR
construction

In this section we analyze the crooked-indifferentiability security of the EXor
construction. Our main result in this section is Theorem 2.

Theorem 2. Let l = 3n + 1, q̃ ≤ 2n/2 and ε1 = ε + q1
(l+1)2n ≤

1
16 . Let f : [l] ×

{0, 1}n → {0, 1}n be a family of random functions and EXor : {0, 1}n → {0, 1}n
be the enveloped-xor construction. Then there exists a simulator S such that for
all all ((q1, q̃), (q2, qsim), ε, δ) crooked distinguisher A = (A1,A2)

Advcrooked-indiff
A,(EXor,f) ≤ (4l2q̃)q22/2

n + (4q̃ + 2l)q2ε
1/16
1

The simulator is described in Fig 2 which makes at most q2 query to the random
oracle F and makes q2lq̃ many calls to the subverted implementation f̃ .

Proof. We recall that, in the real world, the distinguisher is interacting with the

subverted construction ẼXor which is defined as

ẼXor(R,m) = f̃(0, g̃R(m)) where g̃R(m) =

l⊕
i=1

f̃(i,m⊕ ri).

We also define a hybrid construction EXor[f](R,m) = f(0, g̃R(m)). Now consider
an adversary A interacting with (f,EXor := EXor[f]) in the second phase.

Bad Events We consider the bad event happening immediately after ith query
of the adversary which is of the form (j, xi) for j > 0. We write mi = xi + Rj .
We define four bad events.

1. Bad1i holds if (0, g̃R(mi)) ∈ subvf
2. Bad2ai holds if (0, g̃R(mi)) ∈ Dom(τi−1)
3. Bad2bi holds if g̃R(mi) = g̃(mj) for some j < i
4. Bad2ci holds if (0, g̃R(mi)) ∈ Q(x) for some x ∈ Dom(τi) and x ∈ subvf .

Let Bad1 = ∨iBad1i, Bad2 = ∨i(Bad2ai ∨Bad2bi ∨Bad2ci), and Bad =
Bad1 ∨Bad2.

Claim 3

∆A2(r,τ̃ ,R)

(
(f,EXor(R, ·)) ; (f, ẼXor(R, ·))

)
≤ Pr(Bad1)

where Bad1 holds while A interacting with (f,EXor).

15

O(j, x)

1 : if (j, x, z) ∈ Lf return z

2 : z
$←− {0, 1}n

3 : Add the entry (j, x, z)→ Lf

4 : return z

g̃R(M)

1 : Sum = 0n

2 : for j = 1 to ` do

3 : Sum = Sum⊕ Õ(j,M ⊕Rj)

4 : endfor

5 : return Sum

offline phase

1 : for all (i,Mk ⊕Ri) ∈ LA

2 : recompute g̃R(Mk) and update Lf

Õ(j, x) (j > 0)

1 : return h̃O(j, x)

Main(j, x)

1 : if j = 0

2 : temp = O(0, x), LA = LA ∪ {(0, x, temp)},
3 : return temp

4 : M = x⊕Rj , LM = ∅, S = g̃R(M)

5 : if (0, S, t) ∈ LA Bad2a = 1

6 : else Add (0, S,F(M)) to L

7 : if (0, S, z) ∈ Lf

8 : Overwrite the entry(0, S,F(M))

9 : for i = 1 to `

10 : Add (i,O(i,M ⊕Ri)) to LM

11 : return LM

Fig. 2: Simulator for EXor: Offline Phase is executed after all the distinguisher
queries.

Proof of the above claim is straightforward as both worlds behave identically
until Bad1 does not hold.

We have defined our simulator SF in Figure 2 where F : {0, 1}n → {0, 1}n
is a random function. The simulator has also observed the above bad events
in particular, Bad2. Now we claim that the hybrid construction and the ideal
world is indistinguishable provided Bad2 does not hold (in the hybrid world)
while A interacting with (f,EXor).

Claim 4

∆A2(r,τ̃ ,R)

(
(f,EXor(R, ·)) ; (SF,f̃ (τ̃ , R),F)

)
≤ Pr(Bad2).

We call a transcript good if Bad2 does not hold. In case of simulator world,
whenever Bad2 does not hold, simulator maintains extended transcript which is
consistent with the hybrid world. As the simulator set all outputs of the function
either randomly or through outputs of F , realizing any such good transcript
τ ′ has probability 2−nσ where σ = |τ ′ \ τ0|. We have already seen that the
probability of realizing a good transcript in the hybrid world is exactly 2−nσ.
In other words, the both worlds behave identically until Bad2 does not hold.
Combining Claims 3 and 4, we get

Advcrooked-indiff
A,(EXor,f) ≤ Pr [Bad].

The proof of Theorem 2 follows from the following lemma. ut

16

Lemma 4.

Pr[Bad] ≤ (4l2q̃)q22/2
n + (4q̃ + 2l)q2ε

1/16
1

The lemma is proved in section 6.

6 Proof of Lemma 4

We write f ⇒j Trj to denote the event that after j queries to (f,EXor), an
adversary obtains the transcript Trj . We skip the notation j if it is understood
from the context.

Definition 7. A transcript Tri−1 is good if

Pr((R, f) ∈ G | f ⇒ Tri−1) ≥ 1− 3q̃ε
1/16
1 .

Applying Markov inequality on Lemma 3, we have Pr(Tri−1 is good) ≥ 1 −
ε
1/16
1 . Let us fix a good transcript Tri−1 (which also determines mi for the ith

query) and a function f agreeing on Tri−1 such that (R, f) ∈ G.

Definition 8. For any fix k, we say that f is called Tri-good if (i) f ⇒ Tri−1
and (ii) (αk, f) is good.

Claim 5 For any Tri-good f there exists a set S of size at least 2n(1 − ε1/41)
such that for all β ∈ S, fβ := f |α→β is also Tri-good.

Proof. We fix a function f ∈ ΓR,τi−1,πi−1
such that (αk, f) is Tri-good. Now we

identify a set of good values of β such that fβ := f |αk→β ∈ ΓR,τi−1,πi−1 such
that (αk, f) is Tri-good. In other words, setting the output of f on the point
αk to β keeps the pair (αk, fβ) good. For every x ∈ Dom(τi−1) ∩ Q−1f (αk), let
Bx denote the set of all bad β values for which good condition of (αk, f) gets

violated. By definition, |Bx| ≤ ε1/21 and hence | ∪x Bx| ≤ 2nε
1/4
1 . We define

S = D \ ∪x∈Q−1
f (αk)

Bx.

Note that for all β ∈ S, (αk, fβ) is Tri-good. ut
Due to the above claim, we have

Pr(f(αk) = z | (αk, f) is Tri-good,) ≤ 1

|S|
≤ 1

2n(1− ε1/41)
≤ 2

2n
.

The last inequality holds because ε1 ≤ 1
16 . Now note that for any event E, we

have

Pr(E|Tri−1) ≤ Pr
f

(E ∧ (R, f) ∈ G|Tri−1) + 3q̃ε
1/16
1

≤
l∑

k=1

Pr
f

(E ∧ (αk, f) is Tri−1-good | Tri−1) + 3q̃ε
1/16
1

≤
l∑

k=1

Pr
f

(E | (αk, f) is Tri−1-good) + 3q̃ε
1/16
1

17

For the last inequality we simply use the fact that

Pr
f

((αk, f) is Tri−1-good | Tri−1) ≤ 1.

Now we bound individually each bad events and then we can multiply by l then
add all the terms to get the bound.

Bound of Pr(Bad2ai ∪ Bad2bi) Fix a Tri-good f . Let B2 denote the set of
all elements containing g̃R(mj) (for all j < i) and all elements from D(τi−1) of

the form (0, ∗). Note that the set B2 and
∑
j 6=k f̃(mi +Rj) does not depend on

the value f(αk) provided f(αk) ∈ S. Hence,

Pr
f

(Bad2ai ∪Bad2bi | (αk, f) is Tri−1-good) ≤ 2i/2n.

Bound of Pr(Bad2ci) We first note that for all β ∈ S and an input x which
queries αk, x is not crooked and a robust point. Let A = D(τi)\({αk}∪Q−1f (αk)).

Let Ã denote the set of all points queried by the elements of A. Suppose g̃R(mi) 6∈
Ã. Then, for every x from the domain of τi querying g̃R(mi) must query αk and
hence Bad2ci does not hold. So, Bad2ci can hold only if g̃R(mi) ∈ Ã. Once
again by randomness of f(αk), we have

Pr(Bad2ci | (αk, f) is Tri−1-good) ≤ 2q̃il/2n.

Bound of Pr(Bad1i) Clearly, f̃β(x) can be different from f̃(x), only if x ∈
Q−1f (αk). Moreover for every x ∈ Q−1f (αk), as both (αk, f) and (αk, fβ) are
good, it holds that x /∈ subvf and x /∈ subvfb . Thus for any such Tri-good f, fβ ,
we have the following conditions: subvf = subvfβ . Thus,

Pr[Bad1i | (αk, f) good,Tri good] ≤ 2ε1

So,

Pr[Badi | Tri−1] ≤ 4l2q2q̃/2
n + 2lε1 + 3q̃ε

1/16
1

Finally, we add the probability that we realize a not good transcript Tri−1 and
we obtain bound for Pr(Badi). By taking union bound over i ∈ [q2], we get

Pr[Bad] ≤ 4l2q22 q̃/2
n + 2lq2ε1 + 3q̃q2ε

1/16
1 + q2ε

1/16
1

≤ (4l2q̃)q22/2
n + (4q̃ + 2l)q2ε

1/16
1

This finishes the proof of Lemma 4. ut

18

References

1. Andreeva, E., Mennink, B., Preneel, B.: On the indifferentiability of the Grøstl hash
function. In: Garay, J.A., Prisco, R.D. (eds.) SCN 10. LNCS, vol. 6280, pp. 88–105.
Springer, Heidelberg (Sep 2010). https://doi.org/10.1007/978-3-642-15317-4 7 1

2. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption
against mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (Aug 2014).
https://doi.org/10.1007/978-3-662-44371-2 1 1

3. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (May / Jun 2006).
https://doi.org/10.1007/11761679 25

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indif-
ferentiability of the sponge construction. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (Apr 2008).
https://doi.org/10.1007/978-3-540-78967-3 11 1

5. Bhattacharyya, R., Mandal, A., Nandi, M.: Indifferentiability characterization of
hash functions and optimal bounds of popular domain extensions. In: Progress in
Cryptology - INDOCRYPT 2009, 10th International Conference on Cryptology in
India, New Delhi, India, December 13-16, 2009. Proceedings. pp. 199–218 (2009),
https://doi.org/10.1007/978-3-642-10628-6_14 1, 1.2, 1.2

6. Bhattacharyya, R., Mandal, A., Nandi, M.: Security analysis of the mode of JH
hash function. In: Hong, S., Iwata, T. (eds.) Fast Software Encryption, 17th Inter-
national Workshop, FSE 2010,. Lecture Notes in Computer Science, vol. 6147, pp.
168–191. Springer (2010) 1

7. Chang, D., Nandi, M.: Improved indifferentiability security analysis of chopMD
hash function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 429–443.
Springer, Heidelberg (Feb 2008). https://doi.org/10.1007/978-3-540-71039-4 27 1

8. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.P.: Random oracles and non-
uniformity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I.
LNCS, vol. 10820, pp. 227–258. Springer, Heidelberg (Apr / May 2018).
https://doi.org/10.1007/978-3-319-78381-9 9 1

9. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (Aug 2005). https://doi.org/10.1007/11535218 -
26 1

10. Degabriele, J.P., Paterson, K.G., Schuldt, J.C.N., Woodage, J.: Backdoors in pseu-
dorandom number generators: Possibility and impossibility results. In: Robshaw,
M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 403–432. Springer,
Heidelberg (Aug 2016). https://doi.org/10.1007/978-3-662-53018-4 15 1

11. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: Random oracles with
auxiliary input, revisited. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part II. LNCS, vol. 10211, pp. 473–495. Springer, Heidelberg (Apr / May 2017).
https://doi.org/10.1007/978-3-319-56614-6 16 1

12. Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of permutation-
based compression functions and tree-based modes of operation, with applica-
tions to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 104–121.
Springer, Heidelberg (Feb 2009). https://doi.org/10.1007/978-3-642-03317-9 7 1

19

https://doi.org/10.1007/978-3-642-10628-6_14

13. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (Feb 2004).
https://doi.org/10.1007/978-3-540-24638-1 2 1

14. Mennink, B.: Indifferentiability of double length compression functions. In:
Stam, M. (ed.) 14th IMA International Conference on Cryptography and
Coding. LNCS, vol. 8308, pp. 232–251. Springer, Heidelberg (Dec 2013).
https://doi.org/10.1007/978-3-642-45239-0 14 1

15. Moody, D., Paul, S., Smith-Tone, D.: Improved indifferentiability security bound
for the JH mode. Cryptology ePrint Archive, Report 2012/278 (2012), http://

eprint.iacr.org/2012/278 1
16. Naito, Y.: Indifferentiability of double-block-length hash function without feed-

forward operations. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 17, Part II. LNCS,
vol. 10343, pp. 38–57. Springer, Heidelberg (Jul 2017) 1

17. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Cliptography: Clipping the power
of kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016,
Part II. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (Dec 2016).
https://doi.org/10.1007/978-3-662-53890-6 2 1

18. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against
a kleptographic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) ACM CCS 2017. pp. 907–922. ACM Press (Oct / Nov 2017).
https://doi.org/10.1145/3133956.3133993 1

19. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Correcting subverted random oracles.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 241–271. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-
96881-0 9 1, 1.1, 1.2, 2.1, 4, 3, 3, 3.1, 1, 3.2

20. Russell, A., Tang, Q., Yung, M., Zhou, H., Zhu, J.: Correcting subverted random
oracles. IACR Cryptol. ePrint Arch. 2021, 42 (2021), https://eprint.iacr.org/
2021/042 1.2

21. Young, A., Yung, M.: The dark side of “black-box” cryptography, or: Should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (Aug 1996). https://doi.org/10.1007/3-540-68697-5 8 1

20

http://eprint.iacr.org/2012/278
http://eprint.iacr.org/2012/278
https://eprint.iacr.org/2021/042
https://eprint.iacr.org/2021/042

