
Subversion Resilient Hashing: Efficient Constructions and Modular
Proofs for Crooked Indifferentiability

Rishiraj Bhattacharyya1, Mridul Nandi2, and Anik Raychaudhuri2

1 University of Birmingham, UK, rishiraj.bhattacharyya@gmail.com
2 Indian Statistical Institute, Kolkata, India, mridul.nandi@gmail.com,anikrc1@gmail.com

Abstract. We consider the problem of constructing secure cryptographic hash functions from subverted
ideal primitives. Hash functions are used to instantiate Random Oracles in cryptographic protocols. The
indifferentiability security notion is a popular tool to certify the structural soundness of a hash design for
such instantiations. In CRYPTO 2018, Russell, Tang, Yung, and Zhou introduced the notion of crooked-
indifferentiability to extend this paradigm even when the underlying primitive of the hashing mode is
subverted. They showed that an n-to-n-bit function implemented using Enveloped XOR construction
(EXor) with 3n+ 1 many independent n-to-n-bit functions and 3n2-bit random seed can be proven secure
asymptotically in the crooked-indifferentiability setting. Unfortunately, known techniques to prove crooked-
indifferentiability are extremely complicated, and no practical hashing mode has been analyzed in this
setting.

– We introduce new techniques to prove crooked-indifferentiability. We establish that upper bounding
the subversion probability of a chaining query is sufficient to argue subversion resistance of a stan-
dard indifferentiable mode of operation. Our technique links standard indifferentiability and crooked-
indifferentiability and circumvents the complications of proving the consistency of the simulator in the
crooked setting.

– We prove crooked-indifferentiability of the sponge construction when the underlying primitive is mod-
elled as an n-to-n-bit random function. Our proofs only require n-bit randomly chosen but fixed IV and
do not mandate any independent function requirement. The result naturally extends to the Merkle-
Damg̊ard domain extension with prefix-free padding. Our results minimize required randomness and
solve the main open problem raised by Russell, Tang, Yung, and Zhou.

1 Introduction

We consider the problem of designing Cryptographic Hash Functions from subverted primitives. Tra-
ditionally cryptographic hash functions are designed via applying a domain extension algorithm on
suitable primitives of a smaller domain. Security of the hash functions is often derived via information-
theoretic arguments assuming the underlying primitives behave as ideal where the adversary is per-
mitted only to query the primitives. In practice, however, the implementations of the primitives may
leak more information to the adversary and possibly even allow malicious tampering. A good example
is the Dual-EC tampering attack [15] which led to the withdrawal of a standardized PRG due to a
potential backdoor in the implementation.

The framework of Kleptography, introduced by Young and Yung [31,32] more than twenty years
ago, allows a “proud but curious” adversary to replace a cryptographic implementation with a crooked
version intending to subvert its security without getting caught. Bellare, Paterson, and Rogaway [6]
revitalized the framework under the name of Algorithmic Substitution Attack (ASA). They showed
that it is possible to mount an algorithm substitution attack against almost all known symmetric key
encryption schemes to the extent that the attacker learns the secret key. A series of work has been done
in recent years formalizing approaches to resist algorithm substitution attacks [21,5,26,19,20,28,29,2,4].

Indifferentiability of Hash Functions and Security against ASA. Hash functions are ubiqui-
tous in modern cryptography. Hash functions are widely popular as the drop-in replacements of Ran-
dom Oracles (RO) in cryptographic schemes and protocols. To facilitate this application, the notion
of indifferentiability from a Random Oracle, introduced by Maurer, Renner, and Holenstein [24], has
been established as a mainstream security criterion. Indifferentiability from a Random Oracle implies

©2023 IEEE. For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY)
license to any accepted manuscript version arising.

all security guarantees (like collision resistance) satisfied by a Random Oracle in a single-stage game up
to the indifferentiability bound. Starting from the work of Coron, Dodis, Malinaud, and Puniya [18],
a plethora of results [14,9,11,23,1,12,10,25,27] have been proven to show indifferentiability of different
constructions based on different ideal primitives.

Surprisingly, analysis of secure hash functions against ASA has been scarce. In CRYPTO 2018,
Russel, Tang, Yung and Zhou [30] studied the problem of correcting subverted Random Oracles. They
introduced the notion of Crooked-Indifferentiability as a replacement for classical indifferentiability
for the kleptographic setting. They showed that the Enveloped XOR construction could be proven
secure in this framework.

Like classical indifferentiability, the game of crooked-indifferentiability challenges the adversary to
distinguish between two worlds. In the real world, the adversary has access to the underlying ideal
primitive f , and the construction C, which has subroutine access to f̃ , the subverted implementation
of f .3 The implementation f̃ on input an element x queries the function (possibly adaptively) at
maximum q̃ many points and, based on the transcript, decides the evaluation of x. As the adversary
likes the subversion to go undetected, it is assumed that f̃ differs from f only on some negligible
fraction (ϵ) of the domain.

In the ideal world, the construction is replaced by a Random Oracle F . The role of f is played by
a simulator with oracle access to F and the subverted implementation f̃ . The job of the simulator is
to simulate f in such a way that (C f̃ , f) is indistinguishable from (F , SF ,f̃). In order to avoid trivial
attacks, the framework allows a public random string R to be used as the salt in the construction. The
string R is fixed after the adversary publishes the implementation but stays the same throughout the
interaction. All the parties, including the simulator and the adversary, get R as part of the initialization
input. We note that even in the weaker setting of Random Oracles with auxiliary input, a random
salt is required to prove security [17,22].

The notion of crooked-indifferentiability from a Random Oracle and the composition theorem
proved in [30] guarantees that a construction proved secure in this framework can be used to replace
a Random Oracle in any single-stage game in the kleptographic setting. While popular hash functions
are the most natural choice for instantiating the Random Oracle, their suitability is still unknown.
We ask, can the popular hashing modes, for some parameters, achieve this many-fold stronger security
notion? Given the surge of new constructions in the ASA setting [16,2,3,4], the importance of the
question cannot be overstated.

Proving a construction secure in the crooked-indifferentiability setting is an immensely challenging
task. Unlike the classical setting where the adversary is passive, the crooked-indifferentiability adver-
sary is active and could subvert any algorithm. The only known crooked-indifferentiability bound is
for the construction called Enveloped XOR (EXor), depicted in Figure 1. In [30], the authors using
the rejection-sampling technique showed the security of EXor construction. The instantiation requires
3n+1 many independent functions and n2 many random bits. We note, however, that the Enveloped
XOR construction produces an n-bit to n-bit random function. Instantiating a hash function would
require applying domain extension techniques on top of it, implying more function calls and possibly
more independent random bits. Minimizing randomness and reducing the number of function calls
while still achieving crooked-indifferentiability was left as the main challenge in [30].

Finally, the technique of [30], though ingenious, is very complex. It is difficult to give an intuitive
justification for why the construction and the approach work. The alternative proof of [13] is also quite
involved. Given that we have established tools to prove indifferentiability in the classical setting, it is
natural to ask whether we can leverage those tools to prove crooked-indifferentiability.

3 The domain extension algorithms are simple, and the correctness of their implementations are easy to verify.

2

h(1, ·) h(2, ·) h(3, ·) · · · h(l, ·)

m⊕R1 m⊕R2 m⊕R3 m⊕Rl

+ + · · · + h(0, ·)

0r

0c

R0

c bits

r bits

R1

m0

f

m1

f

m2

· · ·

· · ·

m`

f

z0

f

z1

f

z2

Fig. 1. EXor construction (left) and Sponge Construction with random IV (right).

1.1 Our Contributions

We introduce new techniques to prove crooked-indifferentiability and establish security bounds for
popular hashing modes, the sponge construction and the ubiquitous Merkle-Damg̊ard construction.
We elaborate on our contributions below.

New Techniques for Crooked-Indifferentiability. We present new techniques to prove Crooked-
Indifferentiability. We introduce a new security game called Force-Crook, where the challenge to the
adversary is to produce a message for which the construction makes a primitive query on a sub-
verted input. We show that bounding the advantage of the adversary in the Force-Crook game is
sufficient to prove Crooked-Indifferentiability of constructions secure under the classical indifferentia-
bility paradigm.

Crooked-Indifferentiability of Popular Hashing Modes. We apply our techniques to prove the
security of popular hashing modes. Our main contribution is to show that the sponge construction,
instantiated with a random function and a randomized initial value, is crooked-indifferentiable from a
Random Oracle. The construction uses the same function at every iteration. The design is identical to
the one proven indifferentiable in [9]. This result positively answers our quest for a practical crooked-
indifferentiable hashing mode. Moreover, the proof requires only a linear (in terms of the security
parameter) number of random bits and thus answers the main open question raised by RTYZ [30].

We show that the technique with a minor modification is sufficient to prove the security of the
classical Merkle-Damg̊ard construction with prefix-free padding. The hash function uses an n+ 1-to-
n-bit compression function.

1.2 Overview of Our Techniques

Technical Challenges in Crooked-Indifferentiability. The main challenge in the crooked setting
is to prove the randomness of the construction’s output. As the underlying primitives are subverted,
the adversary may have full information about the function on some points without querying the
oracles. Consider the following example. We are given an n-to-n-bit random function f . By definition,
f is classically indifferentiable from a random oracle. Now consider a simple subverted implementation
f̃ of f . The program f̃ honestly implements f everywhere except at point 0, where it outputs f̃(0) = 0.
Such an f̃ can be easily distinguished from a random oracle.

The established technique to correct the situation would be the random-masking technique, but
that does not work either. Consider, for example, simple input masking with a random string R

obtained by the function gR(M)
def
= f(M ⊕ R). As the string R is fixed at the start of the game

(after the adversary submits the subverted implementation), the distinguisher can indeed choose the
message M = R, resulting in a distinguishing condition gR(R) = 0. From the above two examples,
one can abstract out the first challenge of proving crooked-indifferentiability. The output distribution
of the underlying primitive, conditioned on the adversary’s view, is not uniform for every point. The
challenge becomes even more daunting when we consider an implementation that can subvert a point
based on the function evaluations at that and possibly some other points. We can no longer assume
function values are independently distributed. Thus the tools and techniques developed for classical
indifferentiability seem to be useless here.

3

The Intermediate Game Force-Crook. We found a seemingly obvious but powerful technique to
handle subversions. The difference between the real world in the crooked-indifferentiability and the
real world in the classical indifferentiability setting is only in the oracle of the construction C. In
the crooked setting, C is given oracle access to f̃ whereas, in the classical setting, C queries the
primitive f itself. As long as no chaining value results in querying f on a crooked point, the output
distributions of these two worlds are identical! In other words, if for every message M submitted by
the adversary to C, it holds with a high probability that Cf (M) = C f̃ (M), then (Cf , f) and (C f̃ , f)
are indistinguishable. If C is indifferentiable in the classical setting, then that simulator would work
perfectly as the simulator in the crooked setting.

In Section 3, we introduce a security game Force-Crook where the adversary is challenged to find
a message where Cf (M) ̸= C f̃ (M). We show that for a construction proven indifferentiable from a
random oracle in the classical setting (with security bound δi), the crooked-indifferentiability advantage
is bounded by the advantage of winning the Force-Crook game plus δi.

Bounding Winning Advantage of Force-Crook To bound the adversary’s success probability of
winning the game Force-Crook, we focus on ensuring all the chaining inputs remain uncrooked with
high probability. Our intuition is to argue that if a chaining query is uncrooked, the output is uniform.
Given that only a negligible fraction of points are crooked, when we use random iv, the first chaining
inputs are random and, thus, with high probability, uncrooked. Suppose only a few bits of the message
are injected at every iteration. Then the following chaining query input is close to being uniform and,
thus with high probability, uncrooked as well. Now we can repeat this argument throughout the
computation of C. For the sponge and Merkle-Damg̊ard constructions, this idea in itself is sufficient
for handling simple subversion.

We explain it in more detail for the following simplified setting. Suppose the subverted implemen-
tation f̃ is such that on input a point x, the output of f̃(x) depends only on the value of f(x), and
it is independent of f(y) for all y ̸= x. Consider the sponge construction based on a random function
f : {0, 1}n → {0, 1}n. By definition of worst-case subversion by a proud but curious adversary, for all
choices for the function f , at most ϵ fraction of the inputs are crooked (f̃(x) ̸= f(x)). In addition,
there are at most q1 many points queried by the implementor before producing the subverted imple-
mentation. Hence for every function f , there is a set Sf of size at least (1− ϵ)2n − q1 whose members
are neither fixed by the implementor nor subverted. For a randomly chosen function f and a random
string, with overwhelming probability, the random string will be a member of Sf . If we set the rate
part of the sponge construction to be 1, for both the choice of m0 ∈ {0, 1}, the first chaining query to
f will be a member of Sf with probability (1− 2ϵ− 2q1

2n).
We can repeat the above argument inductively. Consider the lazy sampling framework of random

functions. We say a chaining query xi is good if, for all choices of mi+1 ∈ {0, 1}, the next chaining

query xi+1 = f(xi)⊕mi+1 is subverted with low probability (say ϵ
1
2). In other words, xi+1 is a member

of Sf with high probability. One can show that a randomly chosen point is good with high probability.
As f(xi) is uniformly distributed, xi+1 would also be a good chaining query. For the base case of the
induction argument, we recall that the first chaining query is generated from the initial random string.
For all values of m0 ∈ {0, 1}, it is a good chaining query with high probability. Thus we get all the
chaining queries would be good, and by extension, all the chaining queries will be uncrooked with
overwhelming probability.

The matter gets complicated when we consider a general f̃ whose output can depend on adaptively
chosen multiple points. With careful analysis, we extend our arguments to this general case. In Section
4, we present the analysis in detail.

1.3 Impact of Our Results

Subversion Agnostic Indifferentiability. We achieve a strong form of crooked-indifferentiability
where the simulator is subversion agnostic. When we establish crooked-indifferentiability via the

4

Force-Crook game, S does not even need access to subverted implementation f̃ . While we show
sponge and Merkle-Damg̊ard attain such security, not all constructions achieve such strong crooked-
indifferentiability. One notable example is the Enveloped Xor construction, where the simulator must
have access to f̃ to achieve crooked-indifferentiability as formulated in [30]. Thus our modular proof
technique illustrates a simple condition for a classical indifferentiable construction to achieve crooked-
indifferentiability.

Crooked vs Classical. A learned reader may observe that a crooked-indifferentiable construction’s
efficiency and security parameters are worse than what can be proven in the classical indifferentiability
setting. One can wonder about the crooked-indifferentiability framework’s significance and our results’
impact. In particular, for the sponge construction with n bit function, we prove crooked indifferen-
tiability security of asymptotically n/4 bits when at each round, one bit of message is injected and
ϵ ≤ 1/2n/2. In contrast, SHA3, with each iteration consuming r bits of messages, achieves (n − r)/2
bits of security in the classical indifferentiability setting.

However, comparing bit-security without considering the adversary’s power leads to misleading
impressions. While proving indifferentiability, we aim to achieve independent and uniformly sampled
hash output for every point. The classical indifferentiability assumes that an adversary is passive
and is content with only black-box access to the underlying primitive. Thus, the primitive could
be modelled as ideal. In particular, each point is mapped independently following a high-entropy
probability distribution.

In comparison, the adversary in the kleptographic setting is active. The implementation of the
primitive is subverted. The points are not mapped independently, and for some “small” yet non-zero
fraction of the inputs, the adversary has carefully chosen the function. We can no longer directly
leverage the randomness of the underlying primitive. It is natural that the security-efficiency tradeoff
achieved in the crooked setting against such an active adversary is somewhat weaker than what is
accomplished against the passive adversary of the classical indifferentiability paradigm.

2 Notations and Preliminaries

Notations. Let N = {0, 1, . . . } be the set of natural numbers and {0, 1}∗ be the set of all binary
strings. For a positive integer n, the term {0, 1}n denotes the set of all n-bit binary strings. If x and y

are two strings, xy denotes the concatenated string. We write x
$←− S to denote the process of choosing

x uniformly at random from a set S and independently from all other random variables defined so far.
For a positive integer l, we use (l] and [l] to denote the set {1, . . . , k} and {0, 1, . . . , k} respectively.
Class of Functions. HD,R denotes the set of all functions from D to R. Fm,n denotes the set of all
functions from {0, 1}m to {0, 1}n. f : (k] × Df → Rf denotes a family of k many functions from Df

to Rf . We often use the shorthand f to denote the family {f1 := f(1, ·), . . . , fk := f(k, ·)} when the
function family is given as oracles.

For any tuples of pairs τ = ((x1, y1), . . . , (x|τ |, y|τ |)) we write D(τ) (called domain of τ) to denote
the set {xi : 1 ≤ i ≤ |τ |}. We write τj = ((x1, y1), . . . , (xj , yj)). We say a function f agrees with τ if
for all (x, y) ∈ τ , f(x) = y. For every x ∈ Df , α ∈ Rf , we use fx→α to denote the following function:

fx→α(y) =

{
f(y) if x ̸= y
α if x = y

.

Security Games. The results are proven in the framework of code-based games [7]. A game G consists
of a main oracle and zero or more stateful oracles O1, O2, . . . , On. If a game G is implemented using a
function f , we write G[f] to denote the game. The success probability of algorithm A in the game G

is defined by SuccA,G
def
= Pr

[
GA = 1

]
. The query complexity of A is the number of queries made by

A to its oracles.

5

Definition 1 (Domain Extension). Let D ⊇ Df . A domain extender C with oracle access to a
family of functions f : (k]×Df → R is an algorithm that implements the function H = Cf : D → R.

During the computation of Cf (M), the f query inputs made by C are called the chaining queries.

Adversaries and Distinguishing Advantage. An adversary A is an algorithm possibly with access
to oracles O1, . . . ,Ok denoted by AO1,...,Ok . The adversaries considered in this paper are computation-
ally unbounded. The complexities of these algorithms are measured solely on the number of queries
they make. An algorithm A having access to an oracle is called a q-query algorithm if it makes at
most q queries to its oracle. Similarly, an oracle algorithm having access to two oracles is called a
(q1, q2)-query algorithm if it makes at most q1 and q2 queries to its first and second oracles, respec-
tively. Adversarial queries and the corresponding responses are stored in a transcript τ . D(τ) denotes
the list of inputs (queries) in the transcript.

Definition 2 (Distinguishing Advantage). Let F k and Gk be two k-tuples of probabilistic oracle
algorithms for some positive integer k. We define the advantage of an adversary A at distinguishing
F k from Gk as

∆A(F
k ; Gk) =

∣∣Pr[AF1,F2,...,Fk = 1]− Pr[AG1,G2,...,Gk = 1]
∣∣ .

2.1 Classical Indifferentiability

An oracle construction CO(·, ·) with a randomized initial value (IV) first fixes the IV R (chosen ran-
domly from an initial value space). Afterwards, on input M , the construction C interacts with the
oracle O, and finally, it returns an output, denoted as CO(R,M). When the initial value space is a
singleton (i.e., degenerated), we call C an oracle construction. An (IV-based) oracle construction C
is called F-compatible if the domains and ranges of C and F (an ideal primitive) are the same. Now
we state the definition of indifferentiability of an oracle construction as stated in [18,24] in our termi-
nologies. In the following definition, adversary A and simulator S have independent, private random
coins. Construction C has the random initial vector R, sampled at the start and fixed throughout the
game. The adversary A and the simulator S receive R as input.

Definition 3 (Indifferentiability). Let F be an ideal primitive and CP be an F-compatible oracle
construction. C is said to be ((qP , qC , qsim), ε)-indifferentiable from an ideal primitive F if there exists
a qsim-query algorithm SF (called simulator) such that for any (qP , qC)-query algorithm A, it holds
that

∆A(R)

(
(P,CP (R, ·)) ; (SF (R, ·),F)

)
< ε.

where R is the random initial vector of the construction C, chosen uniformly from the initial coin
space and provided to the adversary A, simulator S.

In the above definition, one may include the adversary and simulator’s complexity (time, query etc.).
However, for information-theoretic security analysis, we may ignore their time complexities.4 A popular
indifferentiability treatment for hash functions considers F to be an n-bit random oracle that returns
independent and uniform n-bit strings for every distinct query. However, the hash function CP can be
defined through different types of primitives P (a random oracle, or a random permutation πn, chosen
uniformly from the set of all permutations over {0, 1}n).

4 one can easily extend the concrete setup to an asymptotic setup. Let ⟨Fn, Pn⟩n∈N be a sequence of primitives and
C(n) be a polynomial time Fn-compatible oracle algorithm. CPn(n) is said to be (computationally) indifferentiable
from Fn if there exists a polynomial-time simulator SFn such that for all polynomial-time oracle algorithm A,
∆A

(
(Pn, C

Pn(n)) ; (SFn ,Fn)
)
= negl(n).

6

P C S F

A

Fig. 2. The indifferentiability security notion. The real world consists of the construction C and the underlying ideal
primitive P . The ideal world consists of the ideal primitive F and the simulator S. The construction C has oracle access
to the underlying primitive P . The simulator S has oracle access to F . When C has a random IV R, the distinguisher A
and the simulator S receive R as input. The distinguisher A interacts either with the real world or with the ideal world.

2.2 Modeling Subversion Algorithms and Crooked-Indifferentiability

We recall the related terms and notations introduced in [30] in our terminologies.

Implementer. A (q, q̃) implementer is a q-query oracle algorithm AO. A outputs the description
of another oracle algorithm F̃O. The algorithm F̃O makes at most q̃ many queries to its oracle. We
call F̃ the implementation. We let τ̃ denote the transcript of oracle queries of A. The transcript τ̃ is
hardwired in F̃ , and all the q̃ queries made by F̃ are different from D(τ̃).
The implementation F̃ is correct if for all f ∈ HDf ,Rf

and for all x ∈ Df , f̃(x)
def
= F̃ f (x) = f(x).

A subverted implementation f̃ on input x queries α
(x)
1 , α

(x)
2 , . . . , α

(x)
q̃ , and based on the query-responses

outputs f̃(x). Without loss of generality, we assume α
(x)
1 = x, that is the first query of f̃(x) is f(x). We

use α ↠f α′ to denote that f̃(α) queries f(α′). Similarly, α ̸↠f α′, denotes that f̃(α) does not query

f(α′). We define the following two sets: (1) Q̃f (x)
def
= {y | x ↠f y} and (2)

−→
Qf (x)

def
= {y | y ↠f x}.

Specifically, Q̃f (x) denotes the set {α(x)
1 , α

(x)
2 , . . . , α

(x)
q̃ }.

−→
Qf (x) denotes the set of all points whose

(subverted) evaluation queries the point x.

Definition 4 (Crooked Implementer). A (q, q̃) implementer A1 is called ϵ-crooked for a function
family HDf ,Rf

, if for every f ∈ HDf ,Rf
, it holds that

Pr
α

$←−Df

[f̃(α) ̸= f(α)] ≤ ϵ

where f̃ ← Af
1 .

Summary. A (crooked) implementation f̃ , to compute f̃(x), queries f(α
(x)
1), . . . , f(α

(x)
q̃) on q̃ many

distinct points (α1 = x) and its decision of whether to subvert f(α) depends on this transcript and
the hardwired string τ̃ . For an ϵ-crooked implementation, for each f ∈ HDf ,Rf

, for at most ϵ fraction
of x ∈ Df , f(x) is subverted.

Detection Algorithm. Given an implementation, one may check the algorithm’s correctness by
comparing the implementation’s outputs with a known correct algorithm. More precisely, we sample

α1, . . . , αt
$←− {0, 1}m and then for all 0 ≤ i ≤ l, we check whether f̃(αi) = f(αi) holds. If it does not

hold, the implementation will be discarded. It is easy to see that for an ϵ-crooked implementation;
the subversion would be detected with a probability of at most tϵ. So for negligible ϵ, this probability
would be negligible for all polynomial function t, and the implementation can survive for further use.

Crooked Distinguisher. A crooked distinguisher is a two-stage adversary; the first stage is a crooked
implementer and the second stage is a distinguisher.

Definition 5 (Crooked Distinguisher). We say that a pair A := (A1,A2) of probabilistic algo-
rithms ((q1, q̃, ϵ), q2)-crooked distinguisher for HDf ,Rf

if

7

(i) A1(r) is a ϵ-crooked (q1, q̃) implementer for HDf ,Rf
and

(ii) A2(r, τ̃ , R) is a q2-query distinguisher where r is the random coin of A, τ̃ is the advice-string,
the transcript of the interaction of A1 with f , and R is the (randomized) initial vector of the target
construction. The random string r and the advice-string τ̃ are hardwired to A2, and the random IV R
is provided as input.

Crooked-Indifferentiability. Now, we state the crooked-indifferentiable security definition (as in-
troduced in [30]) in our notation and terminology. The definition is based on the following two-stage
distinguishing game. The ideal primitives f and F are sampled. The crooked-distinguisher A (with
random string r as the random coins) runs the first phase A1. The crooked implementer A1, with
oracle access to f , produces a subverted implementation F̃ . Then, a uniformly random string R is
sampled and published as the IV of the construction C. Finally, A2 is invoked with an internal random
string r, the advice-string τ̃ , and the random IV R as input. In the real world, A2 interacts with the
f (same from the first stage) and the construction C f̃ (R, ·). In the ideal world, the simulator S gets
the advice-string τ̃ , the initial value R and blackbox access to the subverted implementation F̃ as
inputs, along with oracle access of a random oracle F . The simulator is aimed to simulate f so that
the behaviour of (f, C f̃) is as close as (S,F) to the distinguisher A2.

Definition 6 (Crooked-Indifferentiability [30]). Let F be an ideal primitive and Cf be an IV-
based F-compatible oracle construction. The construction C is said to be ((q1, q̃), (q2, qsim), ϵ, δ)-
crooked-indifferentiable from F if there is a qsim-query algorithm S (called simulator) such that
for all ((ϵ, q1, q̃), q2)-crooked distinguisher (A1(r), A2(r, ·, ·)) for HDf ,Rf

, we have

∆A2(r,τ̃ ,R)

(
(f, C f̃ (R, ·)) ; (SF ,F̃ (τ̃ , R),F)

)
≤ δ (1)

where τ̃ is the advice string of Af
1 . R is the random initial value of the construction sampled after the

subverted implementation is set.

C(R, ·)F̃f S(τ̃ , R) F

F̃

A2(r, τ̃ , R)

Fig. 3. The crooked-indifferentiability notion. In the first phase of the real world, A1 interacts with f and returns an
oracle algorithm F̃ (which would be accessed by the construction C in the second phase). In the second phase, the
random initial value R will be sampled and given to construction C and also to A2. In the ideal world, the simulator
SF gets the transcript of the first phase as an advice string, blackbox access to the subverted implementation F̃ and the
initial value R.

Remark 1. The simulator S gets a blackbox subroutine access to the algorithm F̃ . The simulator can
compute F̃ (x) by invoking F̃ with input x and responding to the oracle queries made by F̃ .

Convention on Crooked Distinguishers. Note that there is no loss in assuming that both A1

and A2 are deterministic (so we skip the notation r) when we consider a computationally unbounded
adversary. A can fix the best internal random coin r for which the distinguishing advantage of A2

is maximum. As the randomness of f,F , the public IV R and the internal random coins of S are

8

independently sampled from r, the maximum distinguishing advantage would follow from an averaging
argument.

We also assume that A2 makes all distinct queries distinct from those made by A1. We skip the
notation τ̃ as an input of A2 as it is fixed throughout the game. As the advice string is fixed, we
consider it part of the transcript. Specifically, the transcript τ0, view of A2 at the start of the second
stage, is set as the advice string τ̃ .

2.3 Markov Inequality

Lemma 1. Let X be a non-negative random variable and a > 0 be a real number. Then it holds that

Pr[X ≥ a] ≤ E(X)

a
.

A simple application of Markov inequality (which is used repeatedly in this paper) is the following.
Consider a joint distribution of random variablesX and Y . Suppose E is an event for which Pr[(X,Y) ∈
E] ≤ ϵ. Let f(x) := Pr[(X,Y) ∈ E|X = x] and E1 := {x : f(x) ≥ δ}. It follows from the definition
that E(f(X)) = Pr[E]. Now, we use Markov’s inequality

Pr[E1] = Pr[f(X) ≥ δ]

≤ E(f(X))/δ

= ϵ/δ.

Note that when X and Y are independent, f(x) = Pr[(x, Y) ∈ E].

2.4 Suitable Functions and Sets

Let f : Df → Rf be a function. For a transcript τ , we define Cf,τ to be the union of the set of subverted
points for the function f and the points fixed by τ .

Definition 7. Cf,τ = {x | x ∈ D(τ) ∨ f̃(x) ̸= f(x)}.

By the definition of ϵ-crooked,

|Cf,τ |
|Df |

≤ ϵτ := ϵ+
|τ |
|Df |

.

At the beginning of the second stage of the crooked-indifferentiability game, the transcript contains
the interaction of the q1 many queries made by the implementer. We define

ϵ1 = ϵ+
q1
2n

.

Let τ be a (partial) transcript. Recall, we say a function g agrees on a transcript τ when the transcript
holds for the function g.

Fn,n|τ
def
= {g ∈ Fn,n | g agrees on τ}.

3 From Classical Indifferentiability to Crooked-Indifferentiability

In this section, we establish sufficient conditions to lift the classical indifferentiability results to the
crooked indifferentiability setting. Let f : Df → R and F : D → R be two random oracles where
D ⊇ Df . Let C

f be an F-compatible construction. We consider a crooked distinguisher A = (A1,A2).

9

Game Force-Crook(C)

1 : f
$←− Fn,n

2 : (τ̃ , ⟨f̃⟩)← Af
1

3 : M ← A(Cf (·,R),f)
2 (τ̃ , R)

4 : if Cf (M) ̸= C f̃ (M)

5 : return 1

6 : else

7 : return 0

Fig. 4. The Force-Crook game

3.1 Force-Crook game

In this section, we introduce the security game Force-Crook. Formally the game is defined in Figure 4.
The force-crook advantage of an adversary is defined as

Advforce-crook
A,C

def
= SuccA,force-crook[C].

Given a construction C, we define

Insecforce-crookC,(q1,q̃,ϵ),q2

def
= maxAAdvforce-crook

A,C .

where the maximum is taken over all ((q1, q̃, ϵ), q2)-crooked-distinguishers.

3.2 Achieving Crooked-Indifferentiability

Our main technique to prove the security of sponge and prefix-free Merkle-Damg̊ard constructions
results from Theorem 1. The idea is depicted in Figure 5. Suppose C is indifferentiable from F (the
advantage of distinguishing middle and rightmost worlds is small). If the Force-Crook advantage is
small, then the advantage of distinguishing between the leftmost and the middle-world is small. Then
the classical simulator S successfully acts as the simulator in the real world of the crooked setting.

C(R, ·)F̃f

A2(r, τ̃ , R)

C(R, ·)f

A2(r, τ̃ , R)

S(τ̃ , R) F

A2(r, τ̃ , R)

Fig. 5. The hybrid: The leftmost picture is the real world of the crooked setting. The middle picture is the real world in
the classical setting. The rightmost picture is the ideal world in the classical setting.

Theorem 1. Let Cf : D → R be a hash function built on primitive f : Df → R. Let Cf be
((qP , qC , qsim), δi)-indifferentiable from a random oracle F . Cf is ((q1, q̃), (q2, qsim), ϵ, δc)-crooked-
indifferentiable from F where

δc ≤ δi + Insecforce-crookC,(q1,q̃,ϵ),q2

and q1 + q2 ≤ qP .

10

Proof. From the definitions and using triangle inequality, we get

δc ≤ δi +∆A2(r,τ̃ ,R)

(
(f, C f̃ (R, ·)) ; (f, Cf (R, ·))

)
.

In order to prove the theorem, we need to show

∆A2(r,τ̃ ,R)

(
(f, C f̃ (R, ·)) ; (f, Cf (R, ·))

)
≤ Insecforce-crookC,(q1,q̃),(q2,qs)

.

Let Bad denote the event A2(r, τ̃ , R) makes a query to C f̃ (or Cf) oracle with input M such that

Cf (R,M) ̸= C f̃ (R,M).

Now unless Bad is set, the outputs of the oracles in both the world (f, C f̃ (R, ·)) and (f, Cf (R, ·)) are
exactly the same. Thus we get

Pr[A(f,C f̃ (R,·))
2 (r, τ̃ , R) = 1 ∩ ¬Bad] = Pr[A(f,Cf (R,·))

2 (r, τ̃ , R) = 1 ∩ ¬Bad]. (2)

We derive, using Definition 2, triangle inequality, and Equation 2

∆A2(r,τ̃ ,R)

(
(f, C f̃ (R, ·)) ; (f, Cf (R, ·))

)
=

∣∣∣∣Pr[A(f,C f̃ (R,·))
2 (r, τ̃ , R) = 1]− Pr[A(f,Cf (R,·))

2 (r, τ̃ , R) = 1]

∣∣∣∣
≤

∣∣∣∣Pr[A(f,C f̃ (R,·))
2 (r, τ̃ , R) = 1 ∩Bad]− Pr[A(f,Cf (R,·))

2 (r, τ̃ , R) = 1 ∩Bad]

∣∣∣∣+∣∣∣∣Pr[A(f,C f̃ (R,·))
2 (r, τ̃ , R) = 1 ∩ ¬Bad]− Pr[A(f,Cf (R,·))

2 (r, τ̃ , R) = 1 ∩ ¬Bad]

∣∣∣∣
=

∣∣∣∣Pr[A(f,C f̃ (R,·))
2 (r, τ̃ , R) = 1 ∩Bad]− Pr[A(f,Cf (R,·))

2 (r, τ̃ , R) = 1 ∩Bad]

∣∣∣∣
≤ Pr[Bad] .

The last inequality follows as both Pr[A(f,C f̃ (R,·))
2 (r, τ̃ , R) = 1 ∩ Bad] and Pr[A(f,Cf (R,·))

2 (r, τ̃ , R) =
1∩Bad] are numbers between 0 and Pr[Bad]. Finally, if Bad happens then A2(r, τ̃ , R) wins the game
Force-Crook. Thus

Pr[Bad] ≤ Insecforce-crookC,(q1,q̃),(q2,qs)
.

The theorem follows. ⊓⊔

4 Crooked-Indifferentiability of Sponge Construction

4.1 Sponge Construction based on Random Functions

In this section, we show that the sponge construction [8] based on an n-to-n-bit random function can
be proved crooked-indifferentiable from a random oracle when initialized with a random IV.
Sponge Construction. The details of the parameters of the sponge construction we consider are
listed below.
Target Hash Function. The construction implements a FIL-hash function H : {0, 1}ℓ → {0, 1}s.
Primitives. The underlying primitive of the construction is an n-to-n bit function f : {0, 1}n →
{0, 1}n. In the security proof, f is modelled as a random oracle.

Public Randomness. The public randomness is R
$←− {0, 1}n.

Padding. We use the same padding scheme as the original sponge construction, where it is required

11

Procedure Sponge

// random string R, Message m ∈ {0, 1}ℓ

1 : x = (xa, xc) = R

2 : for i = 0 to

⌈
ℓ

r

⌉
− 1 do

3 : (xa, xc) = f(xa ⊕mi, xc)

4 : endfor

5 : for i = 0 to
⌈s
r

⌉
− 1 do

6 : Append xa to output

7 : (xa, xc) = f(xa, xc)

8 : endfor

0r

0c

R0

c bits

r bits

R1

m0

f

m1

f

m2

· · ·

· · ·

m`

f

z0

f

z1

f

z2

Fig. 6. Crooked-Indifferentiable Sponge Construction

that the last message block is non-zero.
Construction. The chaining value of the sponge construction is divided into two parts, rate (length
denoted by r) and capacity (length denoted by c). The message is divided into r-bit blocks. The
construction works in two phases, absorbing and squeezing. In one round of the absorbing phase, one
r-bit message block is xored with the rate part of the chaining value. The function f is then applied
to the result (of the xor) to get the chaining value of the next round. The construction enters the
squeezing phase once all the input message blocks are processed. At each round, the rate part of the
chaining value is stored as the output block, followed by the application of f on the whole chaining
value. The algorithm stops once we have s bits of output. The construction is described in Figure 6.

q1 Number of f queries made by the implementor A1

q̃ Number of f queries made by the subverted implementation f̃
q2 Total number of queries made by the distinguisher A2

qsim Total number of F queries made by the simulator S

ϵ Fraction of subverted points under f̃

Fig. 7. Recalling the notations

Our main result in this section is Theorem 2. We recall the notations in Figure 7.

Theorem 2. Let f : {0, 1}n → {0, 1}n be a random function and Cf : {0, 1}ℓ → {0, 1}s be the sponge
construction. Let r be the rate part, and c = n− r be the capacity part of the chain. Then there exists
a simulator S such that for all ((q1, q̃, ϵ), q2)-crooked distinguishers A = (A1,A2), it holds that

Advcrooked-indiffA,(C,f) ≤ O
(
2r × σ ×

(
ϵ
1
2
1 +

q̃

2
n
4

+ ϵ
1
2
1 +

σ

2n
+

σ

2
n
2

))
where ϵ1 = ϵ + q1

2n , σ is the total number of blocks in the queries made by A2. The simulator makes
O(σ) queries.

The rest of the section is dedicated to proving Theorem 2. First, we recall the result of Bertoni,
Daemen, Peeters, and Van Assche [9] to find the classical Indifferentiability bound of the sponge
construction. Then we shall bound the Insecforce-crookC,(q1,q̃),(q2,qs)

, the advantage of any distinguisher against
our construction in the Force-Crook game. Finally, using Theorem 1, we shall get Theorem 2.
Classical Indifferentiability of Sponge with Random Function. We recall the classical indif-
ferentiability result of sponge mode from [9] in our notations and parameters.

Theorem 3 (Theorem 1 in [9]). Let f : {0, 1}n → {0, 1}n be a random function. The sponge
construction instantiating Cf : {0, 1}ℓ → {0, 1}s is (q, qsim, δi)-indifferentiable from a random oracle

for qsim = O(σ) and δi = O(σ
2

2c) where σ is the total number of queries made by the distinguisher.

12

We note that in [9], the above theorem is proved to hold for any fixed IV. Thus we can conclude that
the theorem holds for a randomly chosen and then fixed IV, as required in our case.

4.2 Bounding Probability of Winning Force-Crook: Sponge on Random Functions

Now we bound Insecforce-crookC,(q1,q̃),(q2,qs)
. We shall prove the following lemma which summarizes the main

findings of this section. We recall the notations in Figure 7.

Lemma 2. Let C be the sponge construction with randomized IV. Let r be the rate part, and c = n−r
be the capacity part of the chain. It holds that

Insecforce-crookC,(q1,q̃),(q2,qs)
≤ O

(
2r × σ ×

(
ϵ
1
2
1 +

q̃

2
n
4

+ ϵ
1
2
1 +

σ

2n
+

σ

2
n
2

))
where σ = q2(ℓ+ s) + qS.

The Setup of Bounding Adversary’s Advantage. The main idea of our proof is to bound the
probability that the adversary can produce a message such that a chaining query is subverted. We
need the following definition.

Definition 8 (Robust Point). A point x ∈ {0, 1}n is said to be a (r, ϵ1)-robust point with respect to
a transcript τ , if

1. x /∈ D(τ).
2. Define yζ = f(x)⊕ ζ0n−r for ζ ∈ {0, 1}r. It holds that

Pr
f←Fn,n|τ

 ∨
ζ∈{0,1}r

yζ ∈ Cf,τ

 ≤ 2r
(
ϵ
1
2
1 +
|τ |
2n

+
|τ |
2

n
2

)
.

Popular Points. Consider a point x ∈ Df \ D(τ). x is called favourite of y with respect to τ if

Pr
f

$←−Fn,n|τ

[y ↠f x] ≥ 1

2
n
2

.

Definition 9. x is popular with respect to τ if

Pr
y
[x is favourite of y] >

1

2
n
4

.

Recall that the subversion algorithm f̃ makes at most q̃ many queries; for all y ∈ Df , it holds that
|f̃(y)| ≤ q̃. Using an averaging argument, we get the following lemma.

Lemma 3. For all transcript τ , it holds that the number of popular points is at most q̃2
3n
4 .

Definition 10 (Good Point). A point x is (r, ϵ1)-good with respect to τ if it is (r, ϵ1) robust and
not popular with respect to τ .

The following lemma is a corollary of Lemma 3 and the definition of the ϵ-crooked implementor. It
says a random point is good with high probability.

Lemma 4. Let τ be a transcript. It holds that

Pr
x

$←−Df

[x is not (r, ϵ1) good with respect to τ] ≤ ϵ
1
2
1 +
|τ |
2n

+
q̃

2
n
4

.

13

Proof. Define yζ = f(x)⊕ ζ0n−r for ζ ∈ {0, 1}r. From the definition of ϵ crooked implementor,

Pr
x

$←−Df ,f←Fn,n|τ

 ∨
ζ∈{0,1}r

yζ ∈ Cf,τ

 ≤ 2rϵ1.

By an averaging argument,

Pr
x

$←−Df

 Pr
f←Fn,n|τ

 ∨
ζ∈{0,1}r

yζ ∈ Cf,τ

 > 2rϵ
1
2
1

 ≤ ϵ
1
2
1 .

We derive,

Pr
x

$←−Df

[x is not (r, ϵ1) good with respect to τ]

= Pr
x

$←−Df

[x is not (r, ϵ1) robust with respect to τ] + Pr
x

$←−Df

[x is popular with respect to τ]

≤ ϵ
1
2
1 +
|τ |
2n

+
q̃

2
n
4

.

Next, we wish to ensure that all possible chaining values generated from a good point also become
good points. We need the following definition.

Definition 11. Let x be an (r, ϵ1)-good point with respect to τ . We say y is eligible for (τ, x) if

1. y is an (r, ϵ1)-good point with respect to τ .
2. for τ ′ = τ ∪ (x, y), it holds that y is (r, ϵ1)-good point with respect to τ ′.

Now we are ready to state our main tool.

Proposition 4 Let x be ϵ1-good point with respect to τ .

Pr
y

$←−Df

[y is not eligible with respect to (τ, x)] ≤ ϵ
1
2
1 +
|τ |
2n

+
q̃ + 2r

2
n
4

.

Proof. The idea of the proof is to show that if we sample a point uniformly at random from Df , then
by Lemma 4, with high probability, the point is (r, ϵ1)-good with respect to τ . That means

Pr
f

$←−Fn,n|τ

 ∨
b′∈{0,1}r

(f(y)⊕ b′0n−r ∈ Cf,τ ′)

 ≤ 2r
(
ϵ
1
2
1 +
|τ |
2n

+
|τ |
2

n
2

)
.

Now, if it also holds that (f(y) ⊕ b′0n−r) ̸↠ x for any b′ ∈ {0, 1}r, the point y will remain ϵ1-good
with respect to τ ∪ (x, y). To prove it formally, we consider the following events.

1. y-is-bad: y is not (r, ϵ1)-good with respect to τ .
2. x-is-queried: Pr

f
$←−Fn,n|τ

[(f(y)⊕ b′0n−r) ↠ x] ≥ 1

2
n
2
for some b′ ∈ {0, 1}r.

The following lemma (to be proved in Section 4.3) says that if the above two events do not occur,
then f(y) is an (r, ϵ1)-good point with respect to τ ′.

Lemma 5. Suppose y is such that the event ¬y-is-bad∧¬x-is-queried holds. Then it holds that y
is (r, ϵ1)-good with respect to τ ′ = τ ∪ (x, y).

Pr
f

$←−Γτ ′

 ∨
b′∈{0,1}r

(f(y)⊕ b′0n−r ∈ Cf,τ ′)

 ≤ 2r
(
ϵ
1
2
1 +
|τ |+ 1

2n
+
|τ |+ 1

2
n
2

)
.

14

Thus to prove Proposition 4, we need to bound the probability of the events y-is-bad and x-is-queried.
By Lemma 4,

Pr
y

$←−Df

[y-is-bad] ≤ ϵ
1
2
1 +
|τ |
2n

+
q̃

2
n
4

.

Finally, by the definition of popular points,

Pr
y

$←−Df

[x-is-queried] = 2r Pr
z

$←−Df

[x is favourite of z] ≤ 2r

2
n
4

.

This finishes the proof of Proposition 4. ⊓⊔

Bounding Probability of Winning Force-Crook. We are ready to bound the success probability of
any adversary in the Force-Crook game against the sponge construction when the underlying primitive
is a random function f : {0, 1}n → {0, 1}n. Specifically, we shall show that the adversary can not force
a crooked chaining input for any query made by C.
Bad events. Recall that the adversary makes at most q2 many queries to the oracle Cf . Each such
query leads to ℓ + s many calls (referred to as chaining queries) to f made by C. We consider these
chaining queries to be a sequence of σ = q2(ℓ + s) many queries. By saying ith query, we denote
the ith chaining query from this sequence. We consider the following bad events. The first bad event
(CrookedFirstInput) occurs if, for any message, the first chaining value is crooked. We set the
second bad event (BadChain) if for some message queried by the distinguisher, we get a chaining
value that is not (r, ϵ1)-good as defined in Definition 10.

1. CrookedFirstInput. We say a bad event occurs if for the initial random R, for some m0 ∈ {0, 1}r,

Pr
f

$←−Γτ̃

[R⊕m00
n−r ∈ Cf,τ̃] ≥ 2r

(
ϵ
1
2
1 +

q1
2n

)
.

2. BadChain. We say the ith chaining query xi raises bad event (denoted by BadChaini) if xi

is not (r, ϵ1)-good with respect to the (up to that query) transcript τ . We define BadChain
def
=

∪σi=1BadChaini.

Note that, for standard indifferentiability proofs, we usually consider a bad event when a chaining
query input collides with some unchained query (made by the adversary to the oracle f) input. In our
setting, such unchained queries are part of the transcript, and the definition of good points ensures
that the chaining query does not result in such collisions.
Bounding Probabilities of Bad Events. First, we bound the probability of CrookedFirstInput.

From the definition of ϵ-subversion, when the probabilities are taken over f
$←− Γτ̃ and x

$←− Df

Pr [x ∈ Cf,τ̃] ≤ ϵ1.

By an averaging argument, we get that

Pr
R

$←−Df

 Pr
f

$←−Γτ̃

[R ∈ Cf,τ̃] > ϵ
1
2
1

 ≤ ϵ
1
2
1 .

Thus we bound

Pr
R

$←−Df

[CrookedFirstInput] ≤ 2rϵ
1
2
1 . (3)

15

Next, we bound Pr[BadChain]. For this case, we derive

Pr[BadChain] = Pr[BadChain1] +
σ∑

j=2

Pr[BadChainj |
j−1∧
j′=1

¬BadChainj′].

We start with bounding Pr[BadChain1]. As R is uniformly chosen, from Lemma 4

Pr[BadChain1] = Pr
R

$←−Df

[R is not (r, ϵ1) -good with respect to. τ̃] ≤ ϵ
1
2
1 +

q1
2n

+
q̃

2
n
4

.

Consider the ith chaining query xi where i > 1. Let τi denote the transcript up to ith query. We find
the chaining query xk, queried before xi (k < i) such that

xi = f(xk)⊕ b0n−r for some b ∈ {0, 1}r.

Given
∧i−1

j′=1 ¬BadChainj′ , we conclude xk is (r, ϵ1)-good. If f(xk) ⊕ b0n−r is not (r, ϵ1)-good with

respect to τk+1, this means f(xk)⊕ b0n−r was not eligible with respect to (τk, xk) for some b ∈ {0, 1}r.
Using Proposition 4,

Pr
f

$←−Γτk

 ∨
b∈{0,1}r

(f(xk)⊕ b0n−r) is not eligible w.r.t. (τk, xk)

 ≤ 2r
(
ϵ
1
2
1 +

q̃ + 2r

2
n
4

+
k

2n

)
.

Thus we get

Pr[BadChainj |
j−1∧
j′=1

¬BadChainj′] ≤ 2r
(
ϵ
1
2
1 +

q̃ + 2r

2
n
4

+
j

2n

)
.

Taking sum over all j we get

Pr[BadChain] ≤ 2r
(
σϵ

1
2
1 +

σ(q̃ + 2r)

2
n
4

+
σ2

2n

)
. (4)

Bounding the Force-Crook Advantage. Let Wi denote the event that the input to the ith query is
crooked.

Pr[A wins the game Force-Crook] ≤Pr[CrookedFirstInput] + Pr[BadChain]+
σ∑

i=1

Pr[Wi | ¬CrookedFirstInput
∧
¬BadChain].

As we already have the bound on the probabilities of the bad events, we need to bound

Pr
[
Wi | ¬CrookedFirstInput

∧
¬BadChain

]
.

Consider the ith chaining query xi where i > 1. We find the chaining query xk previous to xi (k < i).
As ¬BadChain holds, xk is (r, ϵ′)-good with respect to the partial transcript τk.

Pr
f

$←−Γτk

 ∨
b∈{0,1}r

(
f(xk)⊕ b0n−r ∈ Cf,τk

) ≤ 2r
(
ϵ
1
2
1 +

k

2n
+

k

2
n
2

)
.

16

This implies

Pr
f

$←−Γτk

[xi ∈ Cf,τk] ≤ 2r
(
ϵ
1
2
1 +

k

2n
+

k

2
n
2

)
≤ 2r

(
ϵ
1
2
1 +

i

2n
+

i

2
n
2

)
.

As the responses of all the f queries are answered truthfully, for a f
$←− Γτk , f ∪τk is a uniform random

element of Γτ̃ . Thus we get

Pr
f

$←−Γτ̃

[xi ∈ Cf,τ̃ | ¬CrookedFirstInput ∧ ¬BadChain] ≤ 2r
(
ϵ
1
2
1 +

i

2n
+

i

2
n
2

)
.

Taking the sum over all i, we get

σ∑
i=1

Pr
f

$←−Γτ̃

[Wi | ¬CrookedFirstInput ∧ ¬BadChain] ≤
σ∑

i=1

2r
(
ϵ
1
2
1 +

i

2n
+

i

2
n
2

)
≤ 2r

(
σϵ

1
2
1 +

σ2

2n
+

σ2

2
n
2

)
.

(5)

Finally, adding Inequalities (3),(4), and (5) we get

Pr[A wins the game Force-Crook] ≤ O
(
2r × σ ×

(
ϵ
1
2
1 +

(q̃ + 2r)

2
n
4

+ ϵ
1
2
1 +

σ

2n
+

σ

2
n
2

))
.

This finishes the proof of Lemma 2 and thus the proof of Theorem 2. ⊓⊔

4.3 Proof of Lemma 5

Proof. Lemma 5 considers a transcript τ and points x, y ∈ {0, 1}n. Suppose y is such that the condition
(¬y-is-bad∧¬x-is-queried) holds. The condition (¬y-is-bad) implies that y is a (r, ϵ1)-good point
with respect to τ . The lemma says that y is a (r, ϵ1)-good point with respect to τ ′ = τ ∪ (x, y).
Given the conditions and following Definition 10, we get that y is (r, ϵ1)-robust with respect to τ and
y is not popular . By Definition 8 we have

Pr
f

$←−Fn,n|τ

 ∨
b′∈{0,1}r

(f(y)⊕ b′0n−r ∈ Cf,τ)

 ≤ 2r
(
ϵ
1
2
1 +
|τ |
2n

+
|τ |
2

n
2

)
.

Our target is to bound the probability that y is not (r, ϵ1)-good with respect to τ ′. Let Yb′ denote

f(y)⊕b′0n−r. First, we bound the probability (over f
$←− Γτ ′) that Yb′ is not a (r, ϵ1)-robust point with

respect to τ ′ = τ ∪ (x, y). We have two cases: a) Yb′ = x for some b′ ∈ {0, 1}r, b) Yb′ ∈ Cf,τ for some
b′ ∈ {0, 1}r. By union bound

Pr

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ ′)

 ≤ Pr

 ∨
b′∈{0,1}r

(Yb′ = x)] + Pr[
∨

b′∈{0,1}r
(Yb′ ∈ Cf,τ)

 . (6)

The term Pr[
∨

b′∈{0,1}r(Yb′ = x)] is bounded above by 2r

2n . For the second term, we can bound the

probability (over f
$←− Γτ ′) as

Pr

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ)

 ≤Pr

 ∨
b′∈{0,1}r

(Yb′ ↠f x)

+ (7)

Pr

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ)

∧ ∧
b′∈{0,1}r

(Yb′ ̸↠f x)

 . (8)

17

Bounding Pr
[∨

b′∈{0,1}r(Yb′ ↠f x)
]
. We first show that the probability that Yb′ queries x is the same

for all the transcripts irrespective of where the value of f(x) is set. In other words, we shall establish
that the probability that Yb′ queries x is the same in both transcripts τ and τ ′.

Pr
f

$←−Fn,n|τ

 ∧
b′∈{0,1}r

(Yb′ ̸↠f x)

 =
∑
z

Pr
f

$←−Fn,n|τ

 ∧
b′∈{0,1}r

(Yb′ ̸↠f x)
∧

f(x) = z

= 2n Pr

f
$←−Fn,n|τ

 ∧
b′∈{0,1}r

(Yb′ ̸↠f x)
∧

f(x) = y

= Pr

f
$←−Fn,n|τ

 ∧
b′∈{0,1}r

(Yb′ ̸↠f x)

 | f(x) = y

= Pr

f
$←−Γτ ′

 ∧
b′∈{0,1}r

(Yb′ ̸↠f x)

 .

Now taking the complement

Pr
f

$←−Γτ ′

 ∨
b′∈{0,1}r

(Yb′ ↠f x)

 = 1− Pr
f

$←−Γτ ′

 ∧
b′∈{0,1}r

(Yb′ ↠f x)

= 1− Pr

f
$←−Fn,n|τ

 ∧
b′∈{0,1}r

(Yb′ ↠f x)

= Pr

f
$←−Fn,n|τ

 ∨
b′∈{0,1}r

(Yb′ ↠f x)

 .

Bounding Pr
[(∨

b′∈{0,1}r(Yb′ ∈ Cf,τ)
)
∧∧

b′∈{0,1}r(Yb′ ̸↠f x)
]
. Similar to the first case, we show the

probability is identical for both the transcripts.

Pr
f

$←−Fn,n|τ

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ)

∧ ∧
b′∈{0,1}r

(Yb′ ̸↠f x)

=

∑
z

Pr
f

$←−Fn,n|τ

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ)

∧ ∧
b′∈{0,1}r

(Yb′ ̸↠f x)
∧

f(x) = z

= 2n Pr

f
$←−Fn,n|τ

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ)

∧ ∧
b′∈{0,1}r

(Yb′ ̸↠f x)
∧

f(x) = y

= Pr

f
$←−Fn,n|τ

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ)

∧ ∧
b′∈{0,1}r

(Yb′ ̸↠f x) | f(x) = y

= Pr

f
$←−Γτ ′

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ)

∧ ∧
b′∈{0,1}r

(Yb′ ̸↠f x)

 .

The Final Derivation. Now we are ready to bound Pr
f

$←−Γτ ′
[
∨

b′∈{0,1}r(Yb′ ∈ Cf,τ ′)]. In the following

derivation, we use inequality 6 in the first step, inequality 7 in the second step, and the above two
cases in the third step.

18

pad(M) = M1 M2 M3 · · · Mµ

fh1 = R f
h2

f
h3

f
hµ

· · · Cf (M)

Fig. 8. Merkle-Damg̊ard mode of operation with random IV

Pr
f

$←−Γτ ′

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ ′)

≤ Pr

f
$←−Γτ ′

 ∨
b′∈{0,1}r

(Yb′ = x)

+ Pr
f

$←−Γτ ′

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ)

≤ 2r

2n
+ Pr

f
$←−Γτ ′

 ∨
b′∈{0,1}r

(Yb′ ↠f x)

+ Pr
f

$←−Γτ ′

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ)

∧ ∧
b′∈{0,1}r

(Yb′ ̸↠f x)

=

2r

2n
+ Pr

f
$←−Fn,n|τ

 ∨
b′∈{0,1}r

(Yb′ ↠f x)

+ Pr
f

$←−Fn,n|τ

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ)

∧ ∧
b′∈{0,1}r

(Yb′ ̸↠f x)

≤ 2r

2n
+ Pr

f
$←−Fn,n|τ

 ∨
b′∈{0,1}r

(Yb′ ↠f x)

+ Pr
f

$←−Fn,n|τ

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ)

≤ 2r

2n
+

2r

2
n
2

+ 2r
(
ϵ
1
2
1 +
|τ |
2n

+
|τ |
2

n
2

)
.

In the last line we used, as the event (¬y-is-bad) holds,

Pr
f

$←−Fn,n|τ

 ∨
b′∈{0,1}r

(Yb′ ∈ Cf,τ)

 ≤ 2r
(
ϵ
1
2
1 +
|τ |
2n

+
|τ |
2

n
2

)
.

and as the event (¬x-is-queried) holds

Pr
f

$←−Fn,n|τ

 ∨
b′∈{0,1}r

(Yb′ ↠f x)

 ≤ 2r

2
n
2

.

⊓⊔

5 Crooked-Indifferentiability of Merkle-Damg̊ard

In this section, we show that the classical Merkle-Damg̊ard construction using n+1-to-n-bit compres-
sion function f and instantiated with a random initialization vector is crooked-indifferentiable from a
random oracle.
Merkle-Damg̊ard Construction. The details of the parameters of Merkle-Damg̊ard construction
are listed below. The construction is shown in Figure 8
Target Hash Function. The construction implements a hash function H : {0, 1}µ → {0, 1}n.
Primitives. The underlying primitive of the construction is an n+1-to-n bit function f : {0, 1}n+1 →
{0, 1}n.
Public Randomness. The public randomness is R

$←− {0, 1}n .

19

Message Preprocessing. The indifferentiability of Merkle-Damg̊ard requires the message space to
be prefix-free. We assume the same. Note if we consider the fixed input length hash function, we do
not need any prefix-free padding. The input message M ∈ {0, 1}µ is parsed as bits M1M2 . . .Mµ.
Our main result in this section is Theorem 5.

Theorem 5. Let f : {0, 1}n+1 → {0, 1}n be a random function and Cf : {0, 1}µ → {0, 1}n be the
Merkle-Damg̊ard construction. There exists a simulator S such that for all ((q1, q̃, ϵ), q2)-crooked dis-
tinguisher A = (A1,A2)

Advcrooked-indiffA,(C,f) ≤ O
(
σ ×

(
ϵ
1
2
1 +

q̃

2
n
4

+ ϵ
1
2
1 +

σ

2n
+

σ

2
n
2

))
where ϵ1 = ϵ+ q1

2n q2 is the total number of construction queries made by A2 and σ is the total number
of blocks in the queries made by A2.

The Theorem follows from Theorem 6 and Lemma 6.
Classical Indifferentiability of Merkle-Damg̊ard Construction. We recall the classical indif-
ferentiability result of Merkle-Damg̊ard mode from [18] in our notations.

Theorem 6 (Theorem 3.1 in [18]). Prefix-free Merkle-Damg̊ard mode instantiating Cf : {0, 1}µ →
{0, 1}n is (q2, qsim, δi)-indifferentiable from a random oracle for qsim = O(σ2) and δi = O(σ

2

2n) where
σ is the total number of blocks in the queries made by the distinguisher.

Bounding Probability of Winning Force-Crook.

Lemma 6. Let C be the Merkle-Damg̊ard construction considered in this section.

Insecforce−crookC,(q1,q̃),(q2,qs)
≤ O

(
σ ×

(
ϵ
1
2
1 +

q̃

2
n
4

+ ϵ
1
2
1 +

σ

2n
+

σ

2
n
2

))
where σ = q2µ+ qS.

The proof of the lemma works exactly as the proof of Lemma 2. The only difference is in the parameters
of the definitions. We skip the proof.

6 Concluding Discussion

We wish to finish the paper with some discussion on the possibility and challenges of extending our
proof to sponge construction with permutations. Finally, we present some research directions we find
interesting.

6.1 Sponge Construction Based on Permutation

The reader may note that the sponge construction in practice is based on a fixed permutation where the
adversary is allowed to make inverse queries. We attempted to extend our proof for the permutations
as well but could not solve one key issue. One main step (Proposition 4) in our proof was to show that
a good point y with respect to a partial transcript τ remains a good point if another good point x is
mapped to y. In order to prove that we argued that the queries of f̃(y) and f̃(f(y)) are independent
from the preimage of y. Thus we could include a good point and extend the transcript without invoking
bad.

This argument does not hold when f is a permutation. In that case f̃ can indeed make f−1

queries. Extending the transcript with good points and simultaneously handling inverse queries seem
to require a different technique. One could try adding additional ingredients like xoring independent
random strings in each iteration. But that would increase the number of random strings to be linear
with the message length, and the resulting construction would not be practical.

20

6.2 Conclusion and Future Research Directions

Subversion Resistance of hash function is an important security property when used to replace random
oracles in the kleptographic setting. This work is the first to analyze the security of practically used
hashing modes in the crooked indifferentiability framework. Our techniques show how to prove crooked
indifferentiability when the underlying primitive is modelled as a random function. The first natural
research problem would be to consider the crooked indifferentiability of sponge construction in the
random permutation model. It would also be interesting to consider proving crooked indifferentiability
of the ideal cipher constructions like the Feistel Network. Finally, extending crooked indifferentiability
to the multi-stage setting like reset indifferentiability would also be interesting.

Acknowledgements. We sincerely thank the reviewers of this and the previous versions of the work
for their insightful comments on the content and the presentation of the paper. Their inputs signifi-
cantly improved the work. Part of this work was done when RB was in NISER, India. RB is supported
by EPSRC EP/R007128/1. For the purpose of open access, the authors has applied a Creative Com-
mons Attribution (CC BY) license to any accepted manuscript version arising.

References

1. Andreeva, E., Mennink, B., Preneel, B.: On the indifferentiability of the Grøstl hash function. In: Garay, J.A.,
Prisco, R.D. (eds.) SCN 10. LNCS, vol. 6280, pp. 88–105. Springer, Heidelberg (Sep 2010). https://doi.org/10.
1007/978-3-642-15317-4_7 1

2. Ateniese, G., Francati, D., Magri, B., Venturi, D.: Public immunization against complete subversion without random
oracles. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 19. LNCS, vol. 11464, pp. 465–485.
Springer, Heidelberg (Jun 2019). https://doi.org/10.1007/978-3-030-21568-2_23 1, 1

3. Ateniese, G., Kiayias, A., Magri, B., Tselekounis, Y., Venturi, D.: Secure outsourcing of cryptographic circuits
manufacturing. In: Provable Security - 12th International Conference, ProvSec 2018, Jeju, South Korea, October
25-28, 2018, Proceedings. pp. 75–93 (2018), https://doi.org/10.1007/978-3-030-01446-9_5 1

4. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signatures: Definitions, constructions and applications.
Theor. Comput. Sci. 820, 91–122 (2020), https://doi.org/10.1016/j.tcs.2020.03.021 1, 1

5. Bellare, M., Hoang, V.T.: Resisting randomness subversion: Fast deterministic and hedged public-key encryption in
the standard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 627–656.
Springer, Heidelberg (Apr 2015). https://doi.org/10.1007/978-3-662-46803-6_21 1

6. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against mass surveillance. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (Aug 2014).
https://doi.org/10.1007/978-3-662-44371-2_1 1

7. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (May / Jun 2006).
https://doi.org/10.1007/11761679_25 2

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Sponge functions. ECRYPT Hash Workshop 2007 (01 2007) 4.1

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (Apr 2008). https:
//doi.org/10.1007/978-3-540-78967-3_11 1, 1.1, 4.1, 3, 4.1

10. Bhattacharyya, R., Mandal, A.: On the indifferentiability of fugue and luffa. In: Applied Cryptography and Network
Security - 9th International Conference, ACNS 2011, Nerja, Spain, June 7-10, 2011. Proceedings. pp. 479–497 (2011),
https://doi.org/10.1007/978-3-642-21554-4_28 1

11. Bhattacharyya, R., Mandal, A., Nandi, M.: Indifferentiability characterization of hash functions and optimal bounds
of popular domain extensions. In: Progress in Cryptology - INDOCRYPT 2009, 10th International Conference on
Cryptology in India, New Delhi, India, December 13-16, 2009. Proceedings. pp. 199–218 (2009), https://doi.org/
10.1007/978-3-642-10628-6_14 1

12. Bhattacharyya, R., Mandal, A., Nandi, M.: Security analysis of the mode of JH hash function. In: Hong, S., Iwata,
T. (eds.) Fast Software Encryption, 17th International Workshop, FSE 2010,. Lecture Notes in Computer Science,
vol. 6147, pp. 168–191. Springer (2010) 1

13. Bhattacharyya, R., Nandi, M., Raychaudhuri, A.: Crooked indifferentiability of enveloped XOR revisited. In: Progress
in Cryptology - INDOCRYPT 2021 - 22nd International Conference on Cryptology in India, Jaipur, India, December
12-15, 2021, Proceedings. pp. 73–92 (2021), https://doi.org/10.1007/978-3-030-92518-5_4 1

14. Chang, D., Nandi, M.: Improved indifferentiability security analysis of chopMD hash function. In: Nyberg, K.
(ed.) FSE 2008. LNCS, vol. 5086, pp. 429–443. Springer, Heidelberg (Feb 2008). https://doi.org/10.1007/

978-3-540-71039-4_27 1

21

https://doi.org/10.1007/978-3-642-15317-4_7
https://doi.org/10.1007/978-3-642-15317-4_7
https://doi.org/10.1007/978-3-642-15317-4_7
https://doi.org/10.1007/978-3-642-15317-4_7
https://doi.org/10.1007/978-3-030-21568-2_23
https://doi.org/10.1007/978-3-030-21568-2_23
https://doi.org/10.1007/978-3-030-01446-9_5
https://doi.org/10.1016/j.tcs.2020.03.021
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-642-21554-4_28
https://doi.org/10.1007/978-3-642-10628-6_14
https://doi.org/10.1007/978-3-642-10628-6_14
https://doi.org/10.1007/978-3-030-92518-5_4
https://doi.org/10.1007/978-3-540-71039-4_27
https://doi.org/10.1007/978-3-540-71039-4_27
https://doi.org/10.1007/978-3-540-71039-4_27
https://doi.org/10.1007/978-3-540-71039-4_27

15. Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ristenpart, T., Bernstein, D.J., Maskiewicz,
J., Shacham, H., Fredrikson, M.: On the practical exploitability of dual EC in TLS implementations. In: Proceedings
of the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014. pp. 319–335 (2014), https:
//www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/checkoway 1

16. Chow, S.S.M., Russell, A., Tang, Q., Yung, M., Zhao, Y., Zhou, H.: Let a non-barking watchdog bite: Cliptographic
signatures with an offline watchdog. In: Public-Key Cryptography - PKC 2019 - 22nd IACR International Conference
on Practice and Theory of Public-Key Cryptography, Beijing, China, April 14-17, 2019, Proceedings, Part I. pp.
221–251 (2019), https://doi.org/10.1007/978-3-030-17253-4_8 1

17. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.P.: Random oracles and non-uniformity. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 227–258. Springer, Heidelberg (Apr / May 2018).
https://doi.org/10.1007/978-3-319-78381-9_9 1

18. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How to construct a hash function. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (Aug 2005). https://doi.org/
10.1007/11535218_26 1, 2.1, 5, 6

19. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security against mass surveillance. In:
Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 579–598. Springer, Heidelberg (Mar 2015). https://doi.org/10.
1007/978-3-662-48116-5_28 1

20. Degabriele, J.P., Paterson, K.G., Schuldt, J.C.N., Woodage, J.: Backdoors in pseudorandom number generators:
Possibility and impossibility results. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp.
403–432. Springer, Heidelberg (Aug 2016). https://doi.org/10.1007/978-3-662-53018-4_15 1

21. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treatment of backdoored pseudorandom
generators. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 101–126. Springer,
Heidelberg (Apr 2015). https://doi.org/10.1007/978-3-662-46800-5_5 1

22. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: Random oracles with auxiliary input, revisited. In:
Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 473–495. Springer, Heidelberg
(Apr / May 2017). https://doi.org/10.1007/978-3-319-56614-6_16 1

23. Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of permutation-based compression functions and
tree-based modes of operation, with applications to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp.
104–121. Springer, Heidelberg (Feb 2009). https://doi.org/10.1007/978-3-642-03317-9_7 1

24. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications
to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg
(Feb 2004). https://doi.org/10.1007/978-3-540-24638-1_2 1, 2.1

25. Mennink, B.: Indifferentiability of double length compression functions. In: Stam, M. (ed.) 14th IMA International
Conference on Cryptography and Coding. LNCS, vol. 8308, pp. 232–251. Springer, Heidelberg (Dec 2013). https:
//doi.org/10.1007/978-3-642-45239-0_14 1

26. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part II. LNCS, vol. 9057, pp. 657–686. Springer, Heidelberg (Apr 2015). https://doi.org/10.1007/
978-3-662-46803-6_22 1

27. Naito, Y.: Indifferentiability of double-block-length hash function without feed-forward operations. In: Pieprzyk, J.,
Suriadi, S. (eds.) ACISP 17, Part II. LNCS, vol. 10343, pp. 38–57. Springer, Heidelberg (Jul 2017) 1

28. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Cliptography: Clipping the power of kleptographic attacks. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (Dec 2016).
https://doi.org/10.1007/978-3-662-53890-6_2 1

29. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against a kleptographic adversary. In: Thu-
raisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 907–922. ACM Press (Oct / Nov 2017).
https://doi.org/10.1145/3133956.3133993 1

30. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Correcting subverted random oracles. In: Shacham, H., Boldyreva, A.
(eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 241–271. Springer, Heidelberg (Aug 2018). https://doi.org/
10.1007/978-3-319-96881-0_9 1, 1.1, 1.3, 2.2, 2.2, 6

31. Young, A., Yung, M.: The dark side of “black-box” cryptography, or: Should we trust capstone? In: Koblitz, N.
(ed.) CRYPTO’96. LNCS, vol. 1109, pp. 89–103. Springer, Heidelberg (Aug 1996). https://doi.org/10.1007/

3-540-68697-5_8 1
32. Young, A., Yung, M.: Kleptography: Using cryptography against cryptography. In: Fumy, W. (ed.) EUROCRYPT’97.

LNCS, vol. 1233, pp. 62–74. Springer, Heidelberg (May 1997). https://doi.org/10.1007/3-540-69053-0_6 1

22

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/checkoway
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/checkoway
https://doi.org/10.1007/978-3-030-17253-4_8
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-53018-4_15
https://doi.org/10.1007/978-3-662-53018-4_15
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-642-03317-9_7
https://doi.org/10.1007/978-3-642-03317-9_7
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-642-45239-0_14
https://doi.org/10.1007/978-3-642-45239-0_14
https://doi.org/10.1007/978-3-642-45239-0_14
https://doi.org/10.1007/978-3-642-45239-0_14
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1145/3133956.3133993
https://doi.org/10.1145/3133956.3133993
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/3-540-69053-0_6

