
Code-based Fully Dynamic Accountable Ring
Signatures and Group Signatures using the

Helper Methodology

Rishiraj Bhattacharyya1, Sreehari Kollath1, Christophe Petit1,2

1 University of Birmingham
rishiraj.bhattacharyya@gmail.com,sreeharikollath@gmail.com

2 Université Libre de Bruxelles christophe.petit@ulb.be

Abstract. In this paper, we propose an efficient code-based account-
able ring signature scheme based on the proof with helper paradigm.
Our main technical contribution is a zero-knowledge OR proof based on
the helper protocol of Beullens (Eurocrypt 2020). Combined with the
Niederreiter encryption scheme, we leverage the framework of Beullens
et al (Eurocrypt 2022) to construct our accountable ring signature. We
apply our construction to develop a code-based dynamic group signa-
ture scheme that simultaneously achieves a logarithmic signature size
and the strongest security notion for full anonymity and unforgeabil-
ity. Our construction results in a relatively short group signatures—just
51kB for a group of 220 members at the 128-bit security level—while
maintaining the strongest security guarantees. In comparison, two re-
cent code-based group signature schemes proposed at PKC 2024 and
Asiacrypt 2024 achieve signature sizes of 146kB and 124kB, respectively,
for the same number of users.

1 Introduction

An Accountable Ring Signature (ARS) [14] is a special type of digital signa-
ture that allows a user to sign a message on behalf of a group while remaining
anonymous—but with an accountability mechanism. Unlike standard ring signa-
tures, where the signer’s identity remains permanently hidden, an ARS includes
a built-in accountability feature. This means that a trusted authority (called an
opener) can reveal the real signer’s identity if necessary. The first formalized
ARS scheme was proposed by Xu et al [36], introducing a designated author-
ity capable of identifying the actual signer in cases of misuse. In [7], Beullens
et al proposed a generic construction of accountable ring signatures based on
group actions. They instantiated their construction in both lattice-based and
isogeny-based settings.

A group signature scheme [16] allows a user to anonymously sign messages
on behalf of a group of users. The membership of the group is managed by a
group manager, who has the ability to trace a signature to its signing member.
The topic of group signatures has been a tremendously popular research topic



with a plethora of works (cf. [12,26,9,2]) appearing in the last thirty years. We
have seen many post-quantum group signature schemes as well. Starting from
[20], notable lattice-based constructions include [17,23,25,24]. Group signatures
can be built from accountable ring signature in a generic fashion [14]. Following
this construction, Beullens et al [7] also obtain group signatures based on group
actions from isogenies and lattices.

In comparison, the number of code-based accountable ring signature and
group signature proposals has been scarce. The earliest code-based group sig-
nature proposal was [17]. Almost at the same time, [1] proposed a novel group
signature scheme. Recently, Liu and Wang proposed a code-based group signa-
ture scheme with logarithmic signature size [27]. These constructions use Stern’s
protocol [34] as a building block, which suffers from a high soundness error
and assumes that the group manager is completely honest. More recently, some
code-based group signature schemes [31,35] were proposed which satisfies the
strongest (and arguably standard by now) security criteria proposed by Bootle
et al [13] where even the group manager is held accountable.

One can imagine combining Stern’s protocol with the technique of [7] to
achieve stronger security properties. In that case, however, we would still loose
the efficiency as the resulting sigma protocol will have a soundness error of 2/3,
as inherent in Stern’s protocol. We ask the following question.

Can we construct efficient code-based accountable ring signatures while also
achieving a reduced soundness error?

In this paper, we answer the question positively. Our contributions are three-fold,

1. We construct a traceable OR proof based on the helper paradigm [6] leading
to a sigma protocol with low soundness error.

2. We employ the techniques of [36] (coupling a randomness-recoverable IND-
CPA secure encryption scheme with an OR proof) to build an accountable
ring signature using our new code-based OR proof and Niederreiter en-
cryption scheme [29].

3. We propose an efficient code-based group signature.

To the best of our knowledge, ours is the first accountable ring signature pro-
posal using the helper paradigm. Following the roadmap of [14] of restricting
accountable ring signatures to get group signatures, we get a code-based group
signature achieving the strongest properties as in [13].
Overview of our construction. The signature generated by our construction
(following the framework of encrypt-then-prove approach [15] has two compo-
nents, a) a ciphertext encrypting an efficiently invertible function of the user
index I with the opener’s public key, and b) a proof of knowledge of the secret
key of the corresponding public key of one-out-of-N group members. In order to
trace the signer, the opener can decrypt the ciphertext to find the index I. To
establish the correctness of the tracing to a judge, the opener will recover the

2



randomness used in the encryption3, and provide a proof of knowledge relating
the ciphertext to the user index.

The framework of [7] requires a perfectly correct IND-CPA secure encryption
and a Non-Interactive Zero-Knowledge (NIZK) proof of an “OR protocol" that
they introduced with online extractability (of a witness). The difficulty of em-
ploying this framework in the code-based setting comes from the complexity of
constructing an efficient NIZK with online-extractability4. A detailed analysis
of the [7] approach reveals that the security of their online extractor is closely
linked to the (special) soundness error. In the case of Stern-based schemes, the
soundness error of one round is 2/3, which is prohibitively high.

Our main technical contribution is to solve this problem via constructing an
OR proof under the helper framework, which significantly reduces the soundness
error (1/K for a large constant K bounded above by the group size N , and the
underlying field size q). The helper framework allows one, with the knowledge of
the seed, to extract a valid witness for every possible value of the challenge. Thus,
we side-step any complexity arising from a possible challenge value where the
response could be simulated without knowing the secret. The only thing we now
need to prove for online extractability is that a random seed can (almost) always
be extracted from random oracle queries while constructing a valid proof; an
event whose probability can be bounded by the unpredictability of the Random
Oracle outputs.
Related works. As previously mentioned, we follow the framework from [7] for
constructing an Accountable Ring Signature (ARS). Their ARS and the resulting
group signature rely on a simple, generic construction based on cryptographi-
cally hard group actions. Recently, [35] proposed the first fully dynamic group
signature that satisfies the standard security notions from [13] while supporting
dynamic membership, allowing users to join and leave the group at any time.
Another notable work in this area was presented in [31], where the authors in-
troduced new proofs of knowledge and several privacy-preserving systems based
on codes. Their approach leverages efficient code-based zero-knowledge protocols
using the VOLE-in-the-Head technique [3], a variant of the MPC-in-the-Head
approach [22]. In comparison, we construct an intermediate Sigma protocol with
a helper, as introduced by [6], to develop an accountable ring signature, which
we then extend to a group signature as its application. Our resulting group sig-
nature achieves a significantly smaller signature size, being less than half of the
sizes proposed in [3,27] for a group of 220 users.

2 Preliminaries

For a finite set S, we write |S| for the size of S. We write x
$←− S for the process

of choosing x uniformly at random from S. We write [1, n] for the set {1, . . . , n}.
3 This requires that the decryption algorithm is randomness-recovering, e.g. OAEP,

Padding-based encryption schemes.
4 The witness-extraction via rewinding (a proof technique for soundness) does not

imply full anonymity [5].

3



For a deterministic (resp. probabilistic) algorithm A, y ← A(x) (resp y
$←−A(x))

denotes y is the (resp. uniformly sampled) output of A on input x. For the set

S, x $,θ←−− S denotes that x is sampled uniformly at random from S using the
seed θ. We define ≈ as the symbol representing approximation in our notation.
We define the weight of a vector y ∈ Fn

q as the number of non-zero coordinates
in the vector and denote it as |y|. We write AO to denote that A has access
to O as an oracle. The advantage of an algorithm A in game G is defined by
AdvA,G

def
= Pr[GA = 1]. Define S(n, ω) and S̃(n, ω) as,

S(n, ω)
def
= {x ∈ Fn

2 | |x| = ω} S̃(n, ω)
def
= {x ∈ Fn

2 | |x| ≤ ω}

A PPT (Probabilistic Polynomial Time) algorithm is an algorithm that runs in
polynomial time and has access to a source of randomness, meaning its execution
may produce different outputs for the same input due to probabilistic choices.

2.1 Binary Linear Code and Syndrome Decoding Problem

For two positive integers k, n with k < n and a prime q, a linear code C is a
k-dimensional subspace of Fn

q . The dual code C⊥ is the orthogonal complement
of C. The code is generated using a parity check matrix H ∈ F(n−k)×n

q whose
rows form a basis of the dual code C⊥; C = {y ∈ Fn

q | HyT = 0}. The parameters
k and n are called the dimension and the length of the code respectively.
Syndrome Decoding Problem (SDP(H, t, ω)): Given positive integers n, k, ω, q,
a random parity check matrix H ∈ F(n−k)×n

q , and a vector (also called syndrome)
t ∈ F(n−k)

q , the syndrome decoding problem (SDP(H, t, ω)) asks to find a vector
y ∈ Fn

q such that HyT = t satisfying |y| ≤ ω if it exists. We denote SDP(H, ω)
as the problem of finding a solution to a random syndrome, assuming that a
solution exists.

Although the general decoding problem for binary linear codes is NP-complete
[4] and conjectured to be hard on random instances, some well-known families
of linear codes admit efficient decoders. Code-based cryptosystems use one such
code for decryption, typically quasi-cyclic codes or Goppa codes, in a disguised
form. In our constructions, we work with binary codes, taking q = 2 as the finite
field size.
Niederreiter Encryption [29]: We recall the classical version of the Nieder-
reiter public-key encryption scheme.

– Keygen: Let n, k, ω ∈ Z+. Let H be an (n− k)× n parity-check matrix for a
[n, k] linear code C with a fast decoding algorithm D that can correct up to
ω errors. Generate an (n − k) × (n − k) binary non-singular matrix S, and
an (n× n) permutation matrix P. Then compute H′ = SHP and set
• Public Key: H′ • Private Key: (S,H,P)

– Encrypt(H′,m)m∈Fn
2 ,|m|=ω: Output the ciphertext, cT = H′mT

– Decrypt((S,H,P), c): Compute y = S−1cT = HPmT , apply a syndrome de-
coding algorithm D, to recover zT = PmT and retrieve the message by
computing P−1z = mT .

4



Sigma Protocol [19] A Sigma protocol for a binary NP relation R is an in-
teractive protocol consisting of three PPT algorithms (P1,P2,V), in which the
prover’s input is (x,w) ∈ R and the verifier’s input is x. Here x,w are called the
statement and the witness, respectively. The protocol consists of three messages:

1. The prover sends the first message u←− P1(x,w), called a commitment.
2. The verifier chooses a uniformly random challenge ch

$←− C from some finite
challenge space C, and sends it as the second message of the protocol.

3. The prover generates a response z ←− P2(ch) and sends it as the third and
final message in the protocol.

4. The verifier runs the final verification algorithm V(x, u, ch, z) and outputs a
bit b ∈ {0, 1}, where 0 corresponds to reject and 1 corresponds to accept.

The protocol must satisfy the following properties:

1. Completeness. A sigma protocol (P1,P2,V) is said to be correct if for any
(x,w) ∈ R and for any honest prover (P1,P2), with u ←− P1(x,w), ch ←− C
and z←− P2(ch), it holds that V(x, u, ch, z) = 1.

2. 2-special soundness. A sigma protocol is said to satisfy 2-special sound-
ness if there exists a polynomial-time extraction algorithm Ext, that outputs
a witness w such that (x,w) ∈ R given two valid transcripts (x, u, ch, z),
(x, u, ch′, z′) with ch ̸= ch′.

3. Special honest-verifier zero-knowledge. A sigma protocol (P1,P2,V) is
computationally special honest-verifier zero-knowledge (sHVZK) [21] if there
exists a probabilistic polynomial time simulator S such that for all interactive
probabilistic polynomial time adversaries A,

Pr[A(u, z) = 1 | (x,w, ch)←− A(1λ), u←− P1(x,w), z←− P2(ch, x,w, u)]

≈ Pr[A(u, z) = 1 | (x,w, ch)←− A(1λ), (u, z)←− S(x, ch)]

Sigma Protocol with Helper [6] A sigma protocol with helper for relation
R with challenge space C has a trusted third party called the helper who runs a
setup algorithm Setup, based on a random seed, seed at the beginning of each
execution of the protocol. The helper sends auxiliary information aux to the
verifier and seed used in the Setup algorithm to the prover.

In real-world scenarios, it is not ideal to assume the presence of an honest
helper; therefore, the helper should be removed. The idea is to let the prover
pick S different seeds seed1, . . . , seedS and generate S sets of auxiliary information
auxi = Setup(seedi) for 1 ≤ i ≤ S. After this, the prover sends all the auxiliary
information auxi to the verifier, along with the first messages of the protocol
ui for each setup. The verifier picks a random index j and a single challenge
α ∈ C and sends this to the prover. The prover now reveals the seed values,
seedi for which i ̸= j. The prover also sends the response, z to the challenge α
at index j. Using the seeds, the verifier then checks whether all the auxiliary
information auxi ̸=j was generated honestly and checks if z is a correct response
to the challenge at index j.

5



In a standard, interactive, zero-knowledge proof, the prover initially com-
putes a series of commitments, followed by challenges from the verifier, which
the prover responds to. Contrastingly, in a non-interactive zero-knowledge proof
(NIZK), the verifier’s role is assumed by a hash function (or a comparable mecha-
nism). Fiat–Shamir heuristic [18] is a technique that allows for taking interactive
proof of knowledge and creating a digital signature based on it.

2.2 Accountable Ring Signature

We recall the definitions of accountable ring signatures from [14]. To remain
consistent with the literature, we reproduce the following definitions almost ver-
batim from [7].
Accountable Ring Signature An accountable ring signature ΠARS consists of
PPT algorithms (Setup, OKGen, UKGen, Sign, Verify, Open, Judge) defined as
follows:

1. Setup(1λ) −→ pp: On input a security parameter 1λ, it returns a public pa-
rameter pp used by the scheme. We assume pp defines the opener’s public key
space Kopk and the user’s verification key space Kv, with efficient algorithms
to decide membership.

2. OKGen(pp) −→ (opk, osk): On input a public parameter pp, it outputs a pair
of public and secret keys (opk, osk) for an opener.

3. UKGen(pp) −→ (vk, sk): On input a public parameter pp, it outputs a pair of
verification and signing keys (vk, sk) for a user.

4. Sign(opk, sk,R,M) −→ σ: On input an opener’s public key opk, a signing key
sk, a list of verification keys, i.e., a ring, R = {v1, . . . , vN}, and a message
M, it outputs a signature σ.

5. Verify(opk,R,M, σ) −→ 1/0: On input an opener’s public key opk, a ring
R = {v1, . . . , vN}, a message M, and a signature σ, it (deterministically)
outputs either 1 (accept) or 0 (reject).

6. Open(osk,R,M, σ) −→ (v, π)/0: On input an opener’s secret key osk, a ring
R = {v1, . . . , vN}, a message M, a signature σ, it (deterministically) outputs
either a pair of verification key v and a proof π that the owner of v produced
the signature, or 0.

7. Judge(opk, R, vk,M, σ, π) −→ 1/0: On input an opener’s public key opk, a ring
R = {v1, . . . , vN}, a verification key v, a message M, a signature σ, and
a proof π, it (deterministically) outputs either 1 (accept) or 0 (reject). We
assume without loss of generality that Judge(opk,R, v,M, σ, π) outputs 0 if
Verify(opk,R,M, σ) outputs 0.

Security Properties An accountable ring signature is required to satisfy the
following properties: correctness, anonymity, traceability, unforgeability, and trac-
ing soundness.

1. The correctness of a group signature scheme ensures that any valid group
member can create a signature that will be accepted as valid by the verifier.

6



2. Anonymity ensures that a signature does not reveal the identity of the group
member who generated it.

3. Unforgeability considers two types of forgeries. The first captures the nat-
ural notion of unforgeability where an adversary cannot forge a signature
for a ring of honest users, i.e., a ring of users for which it does not know
any of the corresponding secret keys. The second captures the fact that an
adversary cannot accuse an honest user of producing a signature even if the
ring contains malicious users and the opener is malicious.

4. Traceability requires that any opener key pair (opk, osk) in the range of the
opener key generation algorithm can open a valid signature σ to some user
verification key v along with a valid proof π, establishing the identity of the
user.

5. Tracing soundness requires that a signature cannot be traced to two different
users in the ring.

6. Online extractability ensures an extraction algorithm that can always extract
a witness with negligible probability of failure when provided with a valid
proof π and the list of random oracle queries made by an adversary.

For a more formal definition we refer to [14][7].

2.3 Other Tools

We use the notion of Seed Trees and Index Hiding Merkle Trees. Due to space
limitation, we refer the reader to [8] for details.

2.4 From Accountable Ring Signature to Group Signature

An accountable ring signature can be converted into a dynamic group signature.
The opener in an accountable ring signature can also act as the group manager
in a group signature scheme. The group manager has the power to reveal the
identity of the signer if needed, making it responsible for both accountability
and the issuance of signing credentials. There is a natural reduction between the
properties of accountable ring signatures to those of the group signatures. For a
more detailed description, see [13].

3 PoK for one-out-of-N SD Problem

3.1 Gaborit and Bidoux PoK for SD Problem[10]

Let n, k, ω be positive integers, and let H ∈ F(n−k)×n
2 be a parity-check matrix.

Consider the equation y = HeT , where e ∈ S(n, ω). Stern’s protocol [34] enables
a prover to demonstrate knowledge of e such that y = HeT with |e| = ω.

In Stern’s protocol, the prover selects a random vector u ∈ Fn
2 and a permuta-

tion π ∈ Sn to conceal the secret e. In [10], the authors introduced an alternative
proof of knowledge for the syndrome decoding problem using a helper. Their ap-
proach involves generating multiple permutations πi (for i ∈ [1,K]) and revealing

7



all but one to demonstrate knowledge of a solution to a permuted instance of
the syndrome decoding problem, represented by si (for i ∈ [1,K]). Additionally,
the vector u ∈ Fn

2 is used to mask the secret vector, while ti ∈ Fn
2 is introduced

to mask πi(si−1). The detailed steps of the protocol are presented in Figure 1.

Lemma 1. [10] If the hash function Hash is a random oracle, then the proto-
col depicted in Figure 1 is an honest-verifier zero-knowledge proof of knowledge
with Helper having soundness error 1/K assuming the hardness of the syndrome
decoding problem, SDP(H, y, ω).

3.2 PoK for one-out-of-N SD Problem

Let n1, n2, k1, k2, ω1, ω2, N ∈ Z+. Let H1 ∈ F(n1−k1)×n1

2 and H2 ∈ F(n2−k2)×n2

2

be two parity-check matrices. Define

xi = H1d
T
i , yi = H2e

T
i where di ∈ S(n1, ω1), ei ∈ S(n2, ω2)

for i ∈ [1, N ]. Assume that the prover knows the solution to one-out-of-N syn-
dromes with respect to both H1 and H2 with the same index. That is, we assume
the prover knows the values of dI and eI for a certain index I ∈ [1, N ]. We
now outline a proof of knowledge for the joint one-out-of-N syndrome decod-
ing problem in the set {(x1, y1), . . . , (xN , yN )} without revealing the particular
index.

We construct the proof of knowledge using the proof of knowledge for the
syndrome decoding (SD) problem from [10] by using an index-hiding Merkle
tree. The helper first uses the pseudorandom generator (PRG) to generate two
seed values, (seed1, seed2), from the master seed seed. The helper then uses seed1
and seed2 to uniformly sample

a(1) ∈ S(n1, ω1) and a(2) ∈ S(n2, ω2),

respectively. Next, the helper computes the masked values:

x′
i = xi + H1(a

(1))T , y′i = yi + H2(a
(2))T , for i ∈ [1, N ].

The helper then commits to these values and constructs an index-hiding Merkle
tree with root root, where the leaves are defined as

Ci = Hash(bitsi ∥ x′
i ∥ y′i),

for i ∈ [1, N ], with bitsi being uniformly sampled from {0, 1}λ.
Now, assume that the prover knows the secrets dI and eI corresponding to

the Ith instances of the syndrome decoding problems. By design, the weights of
dI + a(1) and eI + a(2) are at most 2ω1 and 2ω2, respectively.

Using the proof in Figure 1, the prover now reveals (x′
I , y

′
I), bitsI , and the

Merkle tree path path corresponding to root with respect to CI . The prover then
proceeds to demonstrate knowledge of the secrets z(1) and z(2) such that

H1(z
(1))T = x′

I , with |z(1)| ≤ 2ω1,

8



Private Data: sk = (e | HeT = y, and | e |= ω)

Public Data: pk = (H ∈ F(n−k)×n
2 , ω, a hash function Hash : {0, 1}⋆ −→ {0, 1}λ,K ∈ Z+, y)

Round 0, Helper − SDHelper(pk, seed)

seed
$←− {0, 1}λ

(θ, ϵ) ∈ ({0, 1}λ)2 ←− Hash(seed)

for i ∈ [1,K]

θi
$,θ←−− {0, 1}λ, ϕi

$,θi←−− {0, 1}λ

πi
$,ϕi←−−− Sn, ti

$,ϕi←−−− Fn
2 , r1,i

$,θi←−− {0, 1}λ

com1,i = Hash(r1,i, ϕi)

endfor

π = πK ◦ · · · ◦ π1, t = tK +

K−1∑

i=1

πK ◦ . . . πi+1(ti)

r
$,ϵ←−− F2, u = π−1(r − t) ∈ Fn

2

com1 = Hash(HuT || π(u) + t || (com(1,i))i∈[1,K])

aux←− {com1}
Send seed to the prover and aux to the verifier

Round 1, Prover− SDP1(pk, sk, seed )

Compute (θi, πi, ti)i∈[1,K], ϵ and u from seed

s0 = u+ e

for i ∈ [1,K]

si = πi[si−1] + ti

endfor

com2 = Hash((si)i∈[1,K])

Send com2 to the verifier

Round 2, Verifier− SDV1()

α
$←− [1,K]

Send α to the prover

Round 3, Prover−SDP2(pk, sk, seed, α)

z1 = s0

z2 = (θi)i∈[1,K]\α

z3 = πα ◦ · · · ◦ π1(s0 − u)

rsp = (z1, z2, z3, ϵ, com1,α)

Send rsp to the verifier

Round 4, Verifier− SDV2(pk, com2, rsp, α)

Compute (ϕ̃i, π̃i, t̃i, r̃1,i)i∈[1,K]\α from z2 and

q̃K = r̃ from ϵ

for i ∈ {K,K − 1, . . . , α+ 1}
q̃i−1 = (π̃i)

−1(q̃i − t̃i)

endfor

s̃0 = z1, s̃α = q̃α + z3

˜com1,α = com1,α

for i ∈ [1,K]\α
s̃i = π̃i(s̃i−1) + t̃i, ˜com1,i = Hash(r̃1,i, ϕ̃i)

endfor

c1 ←− (com2 = Hash(z1 || (s̃i)i∈[1,K]))

c2 ←− (z3 ∈ S̃(n, ω))

c3 ←− (com1 = Hash(H(z1)
T − y || r̃ || ( ˜com1,i)i∈[1,K]))

return c1 ∧ c2 ∧ c3

Fig. 1. The SD protocol[10]

9



H2(z
(2))T = y′I , with |z(2)| ≤ 2ω2.

The detailed algorithm is presented in Figure 2.
We now show that our non-interactive zero-knowledge (NIZK) proof ensures

correctness, soundness, and zero-knowledge properties.

Lemma 2. If the hash function Hash is a random oracle, then the protocol de-
picted in Figure 2 is an honest-verifier zero-knowledge PoK with Helper hav-
ing soundness error 1/K assuming the hardness of syndrome decoding prob-
lems, SDP(H1, xi, ω1) , SDP(H1, 2ω1) SDP(H2, yi, ω2) and SDP(H2, 2ω2) with
1 ≤ i ≤ N .

Proof. We proceed to prove correctness, soundness and zero-knowledge.

Correctness: Assume the helper is honest. The prover commits to the values
x′
i = xi + H1(a

(1))T and y′i = yi + H2(a
(2))T for i ∈ [1, N ], and then proceeds

to prove the knowledge of the secrets corresponding to a pair of the syndromes
(xI , yI). Assume the user knows the solution to the Ith instances of the SD
problem xI and yI . We have x′

I = H1(a
(1)+dI)

T and y′I = H2(a
(2)+eI)

T , where
(a(1)+dI), (a(2)+eI) has weights less than or equal to 2ω1 and 2ω2 respectively.
We modified the protocol from [10] in such a way that the verifier checks whether
the weights of the secret dI + a(1) (resp. eI + a(2)) are less than or equal to 2ω1

(resp. 2ω2). The rest of the checks are satisfied due to the correctness of the
underlying protocol from [10].

Special Soundness: Assume we are provided with two instances(
pk1, pk2, aux1, aux2, root, rsp1, α, rsp

(1)
2 , rsp

(2)
2

)
(
pk1, pk2, aux1, aux2, root, rsp1, α, rsp

(1)
2 , rsp

(2)
2

)
with α ̸= α generated using a random seed seed. To prove the special soundness,
one need to build an efficient knowledge extractor Ext which returns a solution
of the one-out-of-N instance with respect to pk1 and pk2. Given the known
values of z(1)2 and z

(2)
2 from rsp

(1)
2 and rsp

(2)
2 , the extractor Ext can reconstruct

all θ
(1)
i and θ

(2)
i for i ∈ [1,K] \ α. Furthermore, the values θ

(1)
α and θ

(2)
α can

be derived from z
(1)
2 and z

(2)
2 , which are obtained from rsp

(1)
2 and rsp

(2)
2 . Since

the masking values a(1), a(2) and the permutations π
(1)
i , π(2)

i for 1 ≤ i ≤ K are
deterministically generated from the seed values θ(1)i and θ

(2)
i , the extractor can

reconstruct both the masking values and the permutations. Now, for b ∈ {1, 2}

s
(b)
0 = dI + u(b) + a(b) and z

(b)
3 = π(b)

α ◦ · · · ◦ π
(b)
1 (s

(b)
0 − u(b))

are public. From these values, Ext can recover u(1), u(2) and and then dI and eI .
Now, H1d

T
I = xI , H2e

T
I = yI and the extractor has solved the Ith instance of

the one-out-of-N SD problem.

10



Private Data: sk1 = dI , sk2 = eI

Public Data: pk1 = (H1 ∈ F(n1−k1)×n1
2 , ω1,Hash : {0, 1}⋆ −→ {0, 1}λ,K ∈ Z+), {x1, . . . , xN}

Public Data: pk2 = (H2 ∈ F(n2−k2)×n2
2 , ω2,Hash : {0, 1}⋆ −→ {0, 1}λ,K ∈ Z+), {y1, . . . , yN}

Round 0, Helper − OneOutOfNHelper(pk1, pk2, seed, {x1, . . . , xN}, {y1, . . . , yN})

PRG(seed) = (seed1, seed2)

aux1 ←− SDHelper(pk1, seed1) aux2 ←− SDHelper(pk2, seed2)

Recompute θ
(1)
1 , . . . , θ

(1)
K from seed1 and θ

(2)
1 , . . . , θ

(2)
K from the seed2

a(1) $,θ
(1)
1 ,...,θ

(1)
K←−−−−−−−− S(n1, ω1), a(2) $,θ

(2)
1 ,...,θ

(2)
K←−−−−−−−− S(n2, ω2)

for i ∈ [1, N ]

bitsi
$,seed,i←−−−− {0, 1}λ x′

i = xi + H1(a
(1))T y′

i = yi + H2(a
(2))T

Ci = Hash(bitsi || x′
i || y′

i)

endfor

(root, tree)←− MerkleTree(C1, . . . ,CN )

Send seed to the prover and {aux1, aux2, root} to the verifier

Round 1, Prover− OneOutOfNP1(pk1, pk2, sk1, sk2, seed)

Update sk1 = (dI + a(1)), pk1 = (H1, |sk1|,Hash,K ∈ Z+, x′
I)

Update sk2 = (eI + a(2)), pk2 = (H2, |sk2|,Hash,K ∈ Z+, y′
I)

com
(1)
2 ←− SDP1(pk1, sk1, seed1) com

(2)
2 ←− SDP1(pk2, sk2, seed2)

Recompute the index-hiding Merkle tree, tree

path←− MerklePath(tree, I)

Send rsp1 ←− {com(1)
2 , com

(2)
2 , x′

I , y
′
I , bitsI , path} to the verifier

Round 2, Verifier− OneOutOfNV1()

Send α
$←− [1,K] to the prover

Round 3, Prover−OneOutOfNP2(pk1, pk2, sk1, sk2, seed, α)

rsp
(1)
2 ←− SDP2(pk1, sk1, seed1, α) rsp

(2)
2 ←− SDP2(pk2, sk2, seed2, α)

Send rsp
(1)
2 , rsp

(2)
2 to the verifier

Round 4, Verifier− OneOutOfNV2(pk1, pk2, rsp1, rsp
(1)
2 , rsp

(2)
2 , α)

Parse z
(1)
3 and z

(2)
3 from rsp

(1)
2 and rsp

(2)
2

if |z(1)3 | > 2ω1 or |z(2)3 | > 2ω2

return 0

Update pk1 = (H1, |z(1)3 |,Hash,K ∈ Z+, x′
I) pk2 = (H2, |z(2)3 |,Hash,K ∈ Z+, y′

I)

b1 ←− SDV2(pk1, com
(1)
2 , rsp

(1)
2 , α)

b2 ←− SDV2(pk2, com
(2)
2 , rsp

(2)
2 , α)

d←− (root = ReconstructRoot(x′
I , y

′
I , bitsI , path))

return b1 ∧ b2 ∧ d

Fig. 2. The one-out-of-N proof

11



Zero-Knowledge: The protocol is a one-out-of-N proof for joint execution of
two independent proof of knowledge instances. We prove the zero-knowledge
property for one instance. The other holds exactly the same way.

The prover in the protocol provides a path to the root and a proof of knowl-
edge of the solution to a syndrome y′I , I ∈ [1, N ] having weight |sk2|. The process
is divided in two parts. The first part is to prove the knowledge of the solution
Ith syndrome decoding problem (knowledge of eI for the syndrome yI) using
the technique of [10], and the second part is to hide the knowledge of I via the
index-hiding Merkle Tree. The details follow.

Let y1 = HeT1 . The helper samples a ∈ S(n, ω) from seed. The helper commits
to y′1 = y1 + HaT . Let S be the following simulator by modifying the simulator
S′ in [10] that outputs a transcript for the syndrome y1 that is indistinguishable
from an honest execution of the protocol. In the first step we draw a sample
following weight distribution of eI +a. Once the weight ω̃ is fixed then we invoke
the S′ from the simulator in [10].

1. Let g1
$←− S(n, ω2), g2

$←− S(n, ω). Denote ω̃ = |g1+g2|. Choose ẽ2
$←− S(n, ω̃)

2. Simulate S′ on (H2, ω̃,Hash, ,K, y′1) in the following way
(a) Compute (πi, ti) for i ∈ [1,K] and u from seed
(b) Recompute y′1 from seed and compute ẽ1 ∈ Fn

2 such that H(ẽ1)
T = y′1

(c) Compute s̃0 = u+ ẽ1, s̃i = πi[s̃i−1] + ti
(d) Compute s̃α = πα ◦ · · · ◦ π1[u+ ẽ2] + tα +

∑α−1
i=1 πα ◦ · · · ◦ πi+1[ti]

(e) Compute s̃i = πi[s̃i−1] + ti for all i ∈ [α+ 1,K]
(f) Compute ˜com2 = Hash(u+ ẽ1 || (s̃i)i∈[1,K])
(g) Compute z̃1 = u+ ẽ1, z̃2 = (θi)i∈[1,K]\α, z3 = πα ◦ · · · ◦ π1[ẽ2]

3. Recompute path to root w.r.t C1 = Hash(bits1, y
′
1)

4. Compute ˜rsp = (z̃1, z̃2, z̃3, ϵ, ˜com1,α) and output (H, root, y′1, path, ˜com1, ˜com2, α, ˜rsp).

To show the indistinguishability of the entire protocol, we consider the fol-
lowing hybrids.

– Hybrid0: This hybrid has the actual prover.
– Hybrid1: In this game, we set I = 1. By the property of index-hiding merkle

tree, the distribution of (root, path) is indistinguishable from the ones in
Hybrid0.

– The final hybrid is the simulator. The responses by the SDP1 and SDP2

are replaced by the output of S′. Since the prover and the simulator have
the same weight distribution for the secret, indistinguishability follows as in
[10], the output of the simulator S is indistinguishable from the output of
the honest prover for the protocol.

⊓⊔

4 Accountable Ring Signature
4.1 Overview of the construction

In this section, we present an overview of our construction of the accountable
ring signature, following techniques of [7]. Let H2 be a parity check matrix, let

12



N ∈ Z+ denote the number of users in the group, and let F be an efficiently
invertible function encoding user indices into low weight codewords.

For i ∈ [1, N ], each user Ui selects a secret low weight ei, computes their
verification key vi = H2ei, and sends it to an opener together with a proof of
well-formedness. The opener maintains and publishes the set R = {v1, . . . , vN}
consisting of all the verification keys The opener also has a public opening key
H1, which is an encryption key for Niederreiter PKE scheme.

To produce a signature, the signer encrypts F (I) using the Niederreiter PKE
scheme with encryption key H1, and it appends to it a non interactive zero-
knowledge proof for the following three statements:

1. The ciphertext ct is an encryption of F (I) using the Niederreiter PKE
scheme, namely

ct = Encrypt(F (I), r) = H1(F (I) || r)T = H1
1F (I)T + H2

1r
T .

2. vI is included in the ring R ;
3. The signer knows a secret key eI such that vI = H2e

T
I .

The first statement guarantees that any signature can be traced by the opener
and the second and third statements ensure that a user who does not possess a
suitable secret signing key will not be able to sign a message on behalf of the
set.

Consider the set {(ct1, v1), . . . , (ctN , vN )} where cti = ct + H1
1(F (i))T for

i ∈ [1, N ]. We then have (ctI , vI) = (H2
1r

T ,H2e
T
I ), where the signer knows (r, eI),

and all they need to do is to prove that knowledge. This is achieved with a
dedicated “one-out-of-N double syndrome decoding” zero-knowledge protocol
which we describe in Section 3.2. Our basic protocol is an interactive protocol
with helper with high soundness error; to obtain a signature the helper is removed
as in Section 2.1, the protocol is repeated and interaction is removed using the
Fiat-Shamir transform. Further tricks can be used to reduce the proof lengths
and will be described in Section 5.

4.2 Our base zero-knowledge protocol

As mentioned, we construct the proof of knowledge for the one-out-of-N syn-
drome decoding problem over F2 following the approach outlined in Section 4.1.
This proof is defined with respect to the set {(ct1, v1), . . . , (ctN , vN )}, where cti
is given by cti = ct+H1

1(F (i))T , and vi represents the verification key of user Ui
for i ∈ [1, N ].

We now show that our NIZK ensures completeness, soundness and zero-
knowledge properties.

Theorem 1. If the hash function Hash is a random oracle, then the proto-
col depicted above is an honest-verifier zero-knowledge PoK with Helper hav-
ing soundness error 1/K assuming the hardness of four syndrome decoding
problems, SDP(H1, ct, ω1), SDP(H

2
1, 2ω1) SDP(H2, v

′
i, ω2) or SDP(H2, 2ω2), where

ct = Encrypt(F (I), r) and vi is the verification key of the user Ui for i ∈ [1, N ].

13



Proof. Recall that we are proving the knowledge of the

1. The preimage of ctI with the public key being
pk1 = (H2

1 ∈ F(nr−k1)×nr

2 , ω1,Hash : {0, 1}⋆ −→ {0, 1}λ,K ∈ Z+, {ct1, . . . , ctN})
2. the preimage of vI with the public key being

pk2 = (H2 ∈ F(n2−k2)×n2

2 , ω2,Hash : {0, 1}⋆ −→ {0, 1}λ,K ∈ Z+, {v1, . . . , vN})

for a certain index I ∈ [1, N ]. Since we are making use of the protocol from Sec-
tion 3.2, correctness and soundness holds. For the zero-knowledge part, note that
ct is the output of IND-CPA secure encryption, and thus indistinguishable from
a random vector in F(n1−k1)

2 . Thus, the simulator in this section simply reduces
to the simulator from Section 3.2 for (H2

1 with intermediate commitments ct′i)
and (H2, vi) (with same seed to generate the randomness, and the commitment
Ci’s are generated with the intermediate commitments for both the instances,
v′i and ct′i ). The indistinguishability follows. ⊓⊔

4.3 ARS Algorithms

Here, we present all the algorithms for our accountable ring signature.

1. Setup(1λ) −→ pp
On input the security a security parameter 1λ, return the public parameter
pp = ((n1, n2, nr, nm, k1, k2, ω1, ω2) ∈ (Z+)8, seedpub{0, 1}λ). Here nr+nm =
n1. The specific values of nm and nr are chosen based on the number of users
(See Section 5). We define ωr = ⌈nrω1

n1
⌉ and ωm = ω1 − ωr. For security, we

need nr ≥ n1/2 [30].
The public parameters implicitly define H2 ∈ F(n2−k2)×n2

q generated from
seedpub{0, 1}λ, and a relation R = {(v, e) | H2e

T = v with |e| = ω2}.
2. OKGen(pp) −→ (opk =H1,osk)

Let KeyGen(pp) denote the key generation algorithm of an encryption scheme.
The OKGen algorithm outputs a full rank parity-check matrix

H1 = [H1
1 || H2

1] ∈ F(n1−k1)×n1
q

with the trapdoor osk using the key-generation algorithm KeyGen(pp).
3. UKGen(pp) −→ (vi, ei)

The user Ui generates an element (ei, vi) in the hard relation R and publishes
vi as the verification key. Additionally, they provide a proof of knowledge
demonstrating that they know the secret ei, which has a weight exactly equal
to ω2, using the proof of knowledge method outlined in Section 3.1 (here,
the verifier checks whether the weight of the resulting vector is exactly ω2

instead of less than or equal to ω2). The user keeps the witness ei as the
secret signing key.

4. Sign(opk, eI ,R,M) −→ σ and Verify(opk,R,M, σ) −→ 1/0
Recall that the details of the base protocol were described in Section 4.2.
From Base protocol to Main protocol: For λ ∈ Z+, let K correspond
to the parameter from the one-out-of-N protocol. Define, ℓλ = λ/ log2(K)

14



to be the number of rounds we run to reach a soundness error of 1/2λ. Here
we convert the base protocol into a signature scheme using the Fiat-Shamir
transformation. The details of the protocol are given in Figure 3.

5. Open(osk,R,M, σ) −→ (vk, π)/0
Let π be a signature which passes the verification algorithm. The opener
can obtain the ciphertext, ct from the signature. The idea then is to simply
decrypt the ciphertext to obtain the identity of the user.

Decrpt(ct) = Decrypt(Encrypt(F (I), r)) = (F (I), r)

From the recovered plaintext, the opener inverts F to identify the user to
whom F (I) corresponds and outputs either the corresponding verification
key or 0 in case of failure.

6. Judge(opk,R, vk,M, σ, π) −→ 1/0
Let π be a signature which passes the verification algorithm. The opener can
obtain the ciphertext, ct from the signature. Let, Decrypt(ct) = (F (I), r).
The opener now outputs the index I and provides a zero-knowledge proof
of knowledge of the SD problem [10], πjudge for z of weight ωr satisfying
H2

1z
T = ct−H1

1(F (I))T . If the check is right, the judge outputs 1. Note that
since the Neiderreiter decryption algorithm is perfectly correct, there does
not exist an (F (J), r′) ̸= (F (I), r) with |r′| ≤ ωr such that Decrypt(ct) =
(F (J), r′)

Security properties The following theorem captures our main result.

Theorem 2. If the hash function Hash is a random oracle, then the accountable
ring signature obtained by applying Fiat-Shamir transformation on our NIZK
protocol achieves CCA-anonymity against full key exposure, sound traceability,
non-frameability, and unforgeability.

Proof of Theorem 2 Recall that our construction follows the blueprint of [7].
We use the following main theorem of [7].

Theorem 3. ([7]) If the underlying encryption scheme is multi-challenge IND-
CPA secure, and the NIZK is online extractable, honest-verifier proof of knowl-
edge, and the πjudge protocol is honest verifier zero-knowledge proof then the
accountable ring signature achieves CCA-anonymity against full key exposure,
sound traceability, non-frameability, and unforgeability.

Recall that we use the randomised Neiderreiter encryption scheme, which is
proven to be IND-CPA secure [30]. As observed in [7], a single-challenge IND-
CPA encryption scheme is in-fact multi-challenge IND-CPA secure (via a simple
hybrid argument).

Lemma 3. The protocol described in Figure 3 is multi-proof online extractable
for the relation

R =
{(

X = {(vi)}i∈[N ], pk, ct
)
,W = (I, eI , rI) | (H2e

T
I = vI) ∧ |eI | = ω∧

ct = Encrypt(F (I); r)}

15



Private Data: sk1 = r, sk2 = eI

Public Data(pk) : pk1 = (H1 = [H1
1 | H2

1] ∈ F(n1−k1)×n1
2 , ωr,Hash : {0, 1}⋆ −→ {0, 1}λ,K ∈ Z+)

pk2 = (H2 ∈ F(n2−k2)×n2
2 , ω2,Hash : {0, 1}⋆ −→ {0, 1}λ,K ∈ Z+),

R, ct = Encrypt(F (I), r), N,ℓλ, HashFS: {0,1}⋆ −→ [1,S]ℓλ × [1,K]ℓλ

Round 1, Prover− GSP(pk1, pk2, sk1, sk2, seed, ct,R)

K is the size of the challenge space, N is the number of users, S is the number of randomly generated seeds

and ℓλ, the number of repetitions to achieve λ-bits of security

for i ∈ [1, N ]

cti = ct+ H1
1F (i)T

endfor

R←− {v1, . . . , vN} CT←− {ct1, . . . ctN}
for i1 ∈ [1, ℓλ] and for i2 ∈ [1, S]

seedi1,i2
i1,i2,seed←−−−−−− {0, 1}λ, (auxi1,i2 , rooti1,i2)←− OneOutOfNHelper(pk1, pk2, seedi1,i2 ,R,CT),

rsp1,i1,i2 ←− OneOutOfNP1(pk1, pk2, sk1, sk2, seedi1,i2)

endfor

temp = M ∥ FS ∥ (auxi1,i2 , rooti1,i2 , rsp1,i1,i2)i1∈[1,ℓλ],i2∈[1,S] ∥ pk
(j1, . . . , jℓλ , α1, . . . , αℓλ) = HashFS(temp)

for i ∈ [1, ℓλ]

rsp2,i ←− OneOutOfNP2(pk1, pk2, sk1, sk2, seedji , αi)

endfor

reveal←− {(i1, i2) ∈ [1, ℓλ]× [1,S] | i2 ̸= ji1 ]

return π ←− {(seedi1,i2)(i1,i2)∈reveal, (auxi1,i2 , rooti1,i2 , com2,i1,i2)i1∈[1,S],i2∈[1,ℓλ], (rsp2,i)i∈[1,ℓλ]}

Round 2, Verifier− GSV(pk1, pk2, ct,R, π′)

π′ ←− {(seedi1,i2)(i1,i2)∈reveal′ , (aux
′
i1,i2 , root

′
i1,i2 , rsp

′
1,i1,i2

)i1∈[1,S],i2∈[1,ℓλ], (rsp
′
2,i)i∈[1,ℓλ]}

temp = msg ∥ FS ∥ (aux′i1,i2 , root′i1,i2 , rsp′1,i1,i2)i1∈[1,ℓλ],i2∈[1,S] ∥ pk
(j′1, . . . , j

′
ℓλ , α

′
1, . . . , α

′
ℓλ) = HashFS(temp)

reveal′ ←− {(i1, i2) ∈ {1, ℓλ} × {1,S} | i2 ̸= j′i1}
R ←− {v1, . . . , vN} CT←− {ct1, . . . ctN}
for (i1, i2) ∈ reveal′

if seedi1,i2 /∈ π′ return 0

endfor

for (i1, i2) ∈ reveal′

if (aux′i1,i2 , root
′
i1,i2) ̸= OneOutOfNHelper(pk1, pk2, seedi1,i2 ,R,CT)

return 0

endfor

b = 1

for i ∈ {1, ℓλ}
b = b ∧ OneOutOfNV2(pk1, pk2, rsp

′
1,i,ji

, rsp′2,i, α
′
i)

endfor

return b

Fig. 3. The final NIZK

16



5 Parameters and Instantiation for the Group Signature
In this section, we provide concrete parameter choices for our group signature
scheme.
Signature size for a single execution of the protocol from Figure 3:
We will use superscripts notations (1) or (2) to differentiate outputs when we use
pk1 or pk2. Recall that a single execution with helper consists of the auxillary
information aux1 and aux2, root, rsp1, rsp

(1)
2 and rsp

(2)
2 . We now calculate the

cost of the individual components.

1. The helper round requires the prover to send aux1, aux2 and root. This re-
quires 3λ bits.

2. For the first round, the prover has to send rsp1 ←− {com
(1)
2 , com

(2)
2 , ct′I , v

′
I , bitsI ,

path} to the verifier. The targets ct′I and v′I are of length (n1 − k1) and
(n2 − k2) respectively, and the cost of computing the path for a single setup
is λ log2(N) bits. Thus this step requires 3λ+(n1−k1)+(n2−k2)+λ log2(N)
bits

3. The prover then sends two responses rsp
(1)
2 ←− SDP2(pk1, sk1, seed1, α) and

rsp
(2)
2 ←− SDP2(pk2, sk2, seed2, α). The individual components of the responses

include z
(b)
1 , z

(b)
2 , z

(b)
3 and ϵ(b) for b ∈ [1, 2]. We have z

(1)
1 , z

(1)
3 ∈ Fnr

2 and
z
(2)
1 , z

(2)
3 ∈ Fn2

2 . The message z
(b)
2 corresponds to K − 1 distinct seeds and

ϵ(b) refers to another seed value for b ∈ [1, 2]. So the cost of this step in the
protocol will be 2Kλ+ 2nr + 2n2 bits.

Implementation strategies In order to calculate the parameters of our scheme,
we considered the following implementation strategies (from [6] and [11]) to im-
plement the helper protocol and index-hiding Merkle trees.

1. Communicating seeds via a binary tree: In our protocol, the prover se-
lects S seed values and sends all except one. The approach involves employing
a binary tree format, selecting a root node randomly, and generating values
for all S leaf nodes. Rather than sending S − 1 seed values, the prover can
now send ⌈log2(S)⌉ node values within the tree, enabling them to recalculate
all seeds except the challenged one.

2. Using Merkle trees for commitments: Instead of sending Q commit-
ments, comi for i ∈ [1,Q], the prover constructs a Merkle tree on these
commitments and only sends the root of the tree. In response, the prover
sends ⌈log2(Q)⌉ nodes of the Merkle tree to reconstruct the root.

3. Parallel repetitions: Instead of letting the verifier choose 1 out of S setups
to execute with a resulting soundness error 1/K, we now let them choose τ
out of M setups to execute. Now suppose a cheating prover does at most τ
out of the M setups incorrectly, the soundness error of the scheme is bounded
by

max1≤t≤τ

(
M−t
τ−t

)(
M
τ

)
K(τ−t)

4. Random seed substitution: The strategy, introduced in [11], allows to
substitute a vector v ∈ Fn

2 by a random seed. This technique implies that
our proof of knowledge size scales with 1.5τ(nr +n2) instead of 2τ(nr +n2).

17



Total, optimized group signature size We now estimate the size of our
group signatures, following [10].

1. Choose (M, τ,K) such that the soundness error of the protocol is less that
2−λ, where λ is the security parameter. One can use a seed tree to generate
the seeds and a Merkle tree to store all the auxiliary information. Since only
τ setups are executed, the prover has to reveal all except τ seed values and
auxiliary information to the verifier by using the Merkle tree setup. This
information requires (λ+ |com|)τ log2(M/τ) = 2λτ log2(M/τ) bits.

2. With the random seed substitution, the cost of sending z
(b)
1 , z

(b)
3 for b ∈ {1, 2}

will be 1.5(n1 + n2) bits.
3. With the Merkle tree optimization for z

(b)
2 , the seed values can be revealed

with a cost of λ log2(K) bits.
4. Therefore, the total bit size of the signature is

8λ+ τ (2.5(n1 + n2)− (k1 + k2) + λ(log2(N) + 4 log2(K) + 2 log2(M/τ))) .

Concrete parameters The security of the Niederreiter cryptosystem is equiv-
alent to the security of the McEliece cryptosystem [33,28] with the same pa-
rameters. The best algorithms to break these systems are the variants of the
information set decoding [32]. We take the level-1 parameter (nr, k1, ωr) =
(3488, 2720, 64) to achieve 128-bit security for the McEliece system.

We set (nm, ωm) as (55, 1), (109, 2), and (164, 3) corresponding to around
26, 212 and 220 users. More generally, our group signature can accommodate(
nm

wm

)
users. Recall that the values of (n1, ω1) can be calculated as (n1, ω1) =

(nr + nm, ωr + ωm).
Following [27], we set (n2, k2, ω2) = (1280, 640, 132), (1300, 650, 135), (1360, 680, 141)

for N = 26, 212 and 220 users respectively. We also set (K, τ,M) to be (32, 28, 389)
as in [6] to reach 128−bits of security.

The resulting signature sizes are given in the following table.

N Sig. size(kB) (ours) Sig. size(kB)[27] Sig. size(kB) [31]
26 45 112 49
212 48 126 74
220 53 146 124

The signature size for the lattice and isogeny-based constructions for achieving
128−bit security in [7] were 96KB and 15.5KB respectively for 220 users.

References

1. Quentin Alamélou, Olivier Blazy, Stéphane Cauchie, and Philippe Gaborit. A
code-based group signature scheme. Designs, Codes and Cryptography, 82:469–
493, 2017.

2. Michael Backes, Lucjan Hanzlik, and Jonas Schneider-Bensch. Membership privacy
for fully dynamic group signatures. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 2181–2198, 2019.

18



3. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Emmanuela Orsini, Lawrence Roy, and Peter Scholl. Publicly verifiable zero-
knowledge and post-quantum signatures from vole-in-the-head. In Annual Inter-
national Cryptology Conference, pages 581–615. Springer, 2023.

4. Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the
inherent intractability of certain coding problems (corresp.). IEEE Trans. Inf.
Theory, 24(3), 1978.

5. David Bernhard, Marc Fischlin, and Bogdan Warinschi. Adaptive proofs of knowl-
edge in the random oracle model. In Public-Key Cryptography–PKC 2015, pages
629–649. Springer, 2015.

6. Ward Beullens. Sigma protocols for MQ, PKP and SIS, and fishy signature
schemes. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 183–211. Springer, 2020.

7. Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai, and Federico Pin-
tore. Group signatures and more from isogenies and lattices: Generic, simple, and
efficient. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 95–126. Springer, 2022.

8. Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and Falafl:
logarithmic (linkable) ring signatures from isogenies and lattices. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 464–492. Springer, 2020.

9. Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P Smart, and Bogdan Warin-
schi. Get shorty via group signatures without encryption. In Security and Cryptog-
raphy for Networks: 7th International Conference, Proceedings 7, pages 381–398.
Springer, 2010.

10. Loïc Bidoux and Philippe Gaborit. Shorter signatures from proofs of knowledge
for the SD, MQ, PKP and RSD problems. arXiv preprint arXiv:2204.02915, 2022.

11. Loïc Bidoux, Philippe Gaborit, Mukul Kulkarni, and Nicolas Sendrier. Quasi-cyclic
Stern proof of knowledge. In 2022 IEEE International Symposium on Information
Theory (ISIT), pages 1459–1464. IEEE, 2022.

12. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Annual
international cryptology conference, pages 41–55. Springer, 2004.

13. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens Groth.
Foundations of fully dynamic group signatures. In International Conference on
Applied Cryptography and Network Security, pages 117–136. Springer, 2016.

14. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and
Christophe Petit. Short accountable ring signatures based on DDH. In European
Symposium on Research in Computer Security, pages 243–265. Springer, 2015.

15. Jan Camenisch. Efficient and generalized group signatures. In International con-
ference on the theory and applications of cryptographic techniques, pages 465–479.
Springer, 1997.

16. David Chaum and Eugène Van Heyst. Group signatures. In Advances in Cryptol-
ogy—EUROCRYPT’91, pages 257–265. Springer, 1991.

17. Martianus Frederic Ezerman, Hyung Tae Lee, San Ling, Khoa Nguyen, and Huax-
iong Wang. Provably secure group signature schemes from code-based assumptions.
IEEE Transactions on Information Theory, 66(9):5754–5773, 2020.

18. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi-
fication and signature problems. In Conference on the theory and application of
cryptographic techniques, pages 186–194. Springer, 1986.

19



19. Shafi Goldwasser, Silvio Micali, and Chales Rackoff. The knowledge complexity
of interactive proof-systems. In Providing sound foundations for cryptography: On
the work of Shafi Goldwasser and Silvio Micali, pages 203–225. 2019.

20. S Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group signature
scheme from lattice assumptions. In Advances in Cryptology-ASIACRYPT 2010.
Proceedings 16, pages 395–412. Springer, 2010.

21. Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a
secret and spend a coin. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 253–280. Springer, 2015.

22. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
proofs from secure multiparty computation. SIAM Journal on Computing,
39(3):1121–1152, 2009.

23. Shuichi Katsumata and Shota Yamada. Group signatures without nizk: from lat-
tices in the standard model. In Advances in Cryptology–EUROCRYPT 2019, Pro-
ceedings, Part III 38, pages 312–344. Springer, 2019.

24. Fabien Laguillaumie, Adeline Langlois, Benoît Libert, and Damien Stehlé. Lattice-
based group signatures with logarithmic signature size. In Advances in Cryptology-
ASIACRYPT 2013, Proceedings, Part II 19, pages 41–61. Springer, 2013.

25. Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge ar-
guments for lattice-based accumulators: logarithmic-size ring signatures and group
signatures without trapdoors. In Advances in Cryptology–EUROCRYPT 2016,
Proceedings, Part II 35, pages 1–31. Springer, 2016.

26. Benoît Libert, Thomas Peters, and Moti Yung. Short group signatures via
structure-preserving signatures: standard model security from simple assumptions.
In Advances in Cryptology–CRYPTO 2015, Proceedings, Part II 35, pages 296–316.
Springer, 2015.

27. Xindong Liu and Li-Ping Wang. Short code-based one-out-of-many proofs and ap-
plications. In IACR International Conference on Public-Key Cryptography, pages
370–399. Springer, 2024.

28. Robert J McEliece. A public-key cryptosystem based on algebraic. Coding Thv,
4244:114–116, 1978.

29. Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Prob. Contr. Inform. Theory, 15(2):157–166, 1986.

30. Ryo Nojima, Hideki Imai, Kazukuni Kobara, and Kirill Morozov. Semantic secu-
rity for the mceliece cryptosystem without random oracles. Designs, Codes and
Cryptography, 49:289–305, 2008.

31. Ying Ouyang, Deng Tang, and Yanghong Xu. Code-based zero-knowledge from
vole-in-the-head and their applications: Simpler, faster. Technical report, and
Smaller. Cryptology ePrint Archive, Report 2024/1414, 2024.

32. Eugene Prange. The use of information sets in decoding cyclic codes. IRE Trans-
actions on Information Theory, 8(5):5–9, 1962.

33. Nicolas Sendrier. Mceliece public key cryptosystem., 2005.
34. Jacques Stern. A new paradigm for public key identification. IEEE Transactions

on Information Theory, 42(6):1757–1768, 1996.
35. Luping Wang, Jie Chen, Huan Dai, and Chongben Tao. Efficient code-based fully

dynamic group signature scheme. Theoretical Computer Science, 2024.
36. Shouhuai Xu and Moti Yung. Accountable ring signatures: A smart card approach.

In Smart Card Research and Advanced Applications VI: IFIP 18th World Computer
Congress TC8/WG8, pages 271–286. Springer, 2004.

20


	Code-based Fully Dynamic Accountable Ring Signatures and Group Signatures using the Helper Methodology

